Advertisement

Incidence of posterior vitreous detachment after laser in situ keratomileusis

  • Alireza Mirshahi
  • Dörte Schöpfer
  • Daniel Gerhardt
  • Evdoxia Terzi
  • Thomas Kasper
  • Thomas Kohnen
Clinical Investigation

Abstract

Background

Vitreoretinal complications are rare in laser in situ keratomileusis (LASIK). Increase in intraocular pressure caused by intraoperative suction with subsequent deforming of the ocular globe and excimer laser shock during the ablation have been discussed as possible causes. The purpose of this study was to determine the effect of LASIK on the vitreous body.

Patients and methods

In a prospective study we performed ocular ultrasonography (B scan) immediately before and 1 week after LASIK procedure in 103 myopic or myopic–astigmatic eyes (53 patients, mean age 36.3 years, 32 women, 21 men). In particular, the prevalence, localization, and extent of posterior vitreous detachment (PVD) were determined.

Results

The mean spherical equivalent was −4.85 D (range −1.25 to −8.38) and the mean anteroposterior ocular globe length was 25.13 mm (range 23.31–27.65). Ninety-five eyes (92.2%) had no PVD preoperatively. Nine eyes out of this group (seven patients, 9.5%) developed incomplete PVD as assessed 1 week postoperatively. Eight eyes (7.8%) had a partial PVD preoperatively and in only one eye was an extension of vitreous detachment observed after the surgery. None of the preoperatively measured parameters could predict the occurrence of PVD by LASIK.

Conclusions

LASIK may in rare cases lead to new occurrence of PVD or extension of a previously existing partial PVD.

Keywords

Macular Hole Internal Limit Membrane Vitreous Body Posterior Vitreous Detachment Traction Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arevalo JF, Freeman WR, Gomez L (2001) Retina and vitreous pathology after laser-assisted in situ keratomileusis: is there a cause–effect relationship? Ophthalmology 108:839–840CrossRefPubMedGoogle Scholar
  2. 2.
    Arevalo JF, Ramirez E, Suarez E, Cortez R, Antzoulatos G, Morales-Stopello J, Ramirez G, Torres F, Gonzalez-Vivas R (2001) Rhegmatogenous retinal detachment in myopic eyes after laser in situ keratomileusis. Frequency, characteristics, and mechanism. J Cataract Refract Surg 27:674–680CrossRefPubMedGoogle Scholar
  3. 3.
    Arevalo JF, Ramirez E, Suarez E, Morales-Stopello J, Cortez R, Ramirez G, Antzoulatos G, Tugues J, Rodriguez J, Fuenmayor-Rivera D (2000) Incidence of vitreoretinal pathologic conditions within 24 months after laser in situ keratomileusis. Ophthalmology 107:258–262PubMedCrossRefGoogle Scholar
  4. 4.
    Gandorfer A, Kampik A (2003) Pathophysiologie am hinteren Augenabschnitt als Grundlage für chirurgische Interventionen. In: Kampik A, Grehn F (eds) Augenärztliche Therapie. Thieme, Leipzig, pp 94–106Google Scholar
  5. 5.
    Kohnen T, Mirshahi A, Cichocki M, Buehren J, Steinkamp G (2003) Laser in situ keratomileusis for correction of hyperopia and hyperopic astigmatism using a scanning spot excimer laser. Results of a prospective clinical study after 1 year. Ophthalmologie 100:1071–1078CrossRefGoogle Scholar
  6. 6.
    Kohnen T, Steinkamp GW, Schnitzler EM, Baumeister M, Wellermann G, Buhren J, Brieden M, Herting S, Mirshahi A, Ohrloff C (2001) LASIK with a superior hinge and scanning spot excimer laser ablation for correction of myopia and myopic astigmatism. Results of a prospective study on 100 eyes with a 1-year follow-up. Ophthalmologie 98:1044–1054CrossRefGoogle Scholar
  7. 7.
    Kroll P, Stoll W, Kirchhoff E (1983) Kontusions-Sog-Trauma nach Ballverletzungen. Klin Monatsbl Augenheilkd 182:555–559PubMedCrossRefGoogle Scholar
  8. 8.
    Krueger RR, Seiler T, Gruchman T, Mrochen M, Berlin MS (2001) Stress wave amplitudes during laser surgery of the cornea. Ophthalmology 108:1070–1074CrossRefPubMedGoogle Scholar
  9. 9.
    Loewenstein A, Goldstein M, Lazar M (2002) Retinal pathology occurring after excimer laser surgery or phakic intraocular lens implantation: evaluation of possible relationship. Surv Ophthalmol 47:125–135CrossRefPubMedGoogle Scholar
  10. 10.
    Luna JD, Artal MN, Reviglio VE, Pelizzari M, Diaz H, Juarez CP (2001) Vitreoretinal alterations following laser in situ keratomileusis: clinical and experimental studies. Graefe Arch Clin Exp Ophthalmol 239:416–423CrossRefGoogle Scholar
  11. 11.
    Mirshahi A, Kohnen T (2005) Effect of microkeratome suction during LASIK on ocular structures. Ophthalmology 112:645–649PubMedCrossRefGoogle Scholar
  12. 12.
    Principe AH, Lin DY, Small KW, Aldave AJ (2004) Macular hemorrhage after laser in situ keratomileusis with femotosecond laser flap creation. Am J Ophthalmol 138:657–659CrossRefPubMedGoogle Scholar
  13. 13.
    Sebag J (2004) Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefe Arch Clin Exp Ophthalmol 242:690–698CrossRefGoogle Scholar
  14. 14.
    Stulting RD, Carr JD, Thompson KP, Waring GO III, Wiley WM, Walker JG (1999) Complications of laser in situ keratomileusis for the correction of myopia. Ophthalmology 106:13–20CrossRefPubMedGoogle Scholar
  15. 15.
    Sugar A, Rapuano CJ, Culbertson WW, Huang D, Varley GA, Agapitos PJ, de Luise VP, Koch DD (2002) Laser in situ keratomileusis for myopia and astigmatism: safety and efficacy. Ophthalmology 109:175–187CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Alireza Mirshahi
    • 1
  • Dörte Schöpfer
    • 1
  • Daniel Gerhardt
    • 1
  • Evdoxia Terzi
    • 1
  • Thomas Kasper
    • 1
  • Thomas Kohnen
    • 1
  1. 1.Department of OphthalmologyJohann Wolfgang Goethe UniversityFrankfurt am MainGermany

Personalised recommendations