Fluorescein leakage of the optic disc in glaucomatous optic neuropathy

  • Oliver ArendEmail author
  • Andreas Remky
  • Niklas Plange
  • Marion Kaup
  • Bernard Schwartz
Clinical Investigation



To identify and quantify the role of capillary leakage of the optic nerve head in digital fluorescein angiography in normal subjects and patients with open-angle glaucoma.


We conducted a prospective cross-sectional study in the Department of Ophthalmology of the Technical University of Aachen. Thirty patients with primary open-angle glaucoma (POAG) and 30 healthy age-matched subjects were included. Fluorescein angiograms were performed using the scanning laser ophthalmoscope. The fluorescence of the optic nerve head and the surrounding retina (ratio of leakage) was measured using digital imaging analysis in the late phases of the angiogram (9–10 min).


The ratio of optic nerve head fluorescence to retinal reference loci was significantly increased (p=0.01) in patients with glaucoma (POAG, 1.38±0.34) compared with normal subjects (1.20±0.19). Intraocular pressure (p=0.0001), visual field indices (mean deviation, p<0.0001; pattern standard deviation, p<0.0001; corrected pattern standard deviation, p<0.0001), and cup to disc ratios (p=0.02) differed significantly between the groups. Age and systolic and diastolic blood pressure showed no significant differences between groups.


Fluorescein angiography revealed significantly increased vascular leakage of glaucomatous optic nerve heads. An endothelial disruption and fluorescein leakage might be the result of mechanical stress at the level of the lamina cribrosa and/or a sign of ischemic damage. This measurement approach might enable us to judge the severity of optic nerve head leakage, and it is a potential way to evaluate therapeutic regimens.


Blood flow Capillary leakage Fluorescein angiography Glaucoma Microcirculation Optic disc 


  1. 1.
    Arend O, Remky A et al (1999) Retinal hemodynamics in normal tension glaucoma: asymmetry of visual field or optic nerve head excavation. In: Pillunat LE, Harris A, Anderson DR, Greve EL (eds) Current concepts on ocular blood flow in glaucoma. Kugler, The Hague, The Netherlands, pp 245–249Google Scholar
  2. 2.
    Arend O, Remky A et al (1999) Retinale Hämodynamik bei Patienten mit Normaldruckglaukom-Quantifizierung mittels digitaler Scanning-Laser-Fluoreszein-Angiographie. Ophthalmologe 96:24–29Google Scholar
  3. 3.
    Ashton N (1963) Studies of the retinal capillaries in relation to diabetic and other retinopathies. Br J Ophthalmol 47:521–538PubMedGoogle Scholar
  4. 4.
    Ashworth B, Rosen E (1970) Fluorescence of the optic disc in the late phase. Ann Ophthalmol 1:444–451Google Scholar
  5. 5.
    Ben-Sira I, Loebl M et al (1976) In vivo measurements of diffusion of fluorescein into the human optic nerve tissue. Doc Ophthalmol Proc Ser 9:311–314Google Scholar
  6. 6.
    Bron AJ, Tripathi RC et al (1997) The visual pathway: optic nerve. In: Bron AJ, Tripathi RC, Tripathi B (eds) Wolff’s anatomy of the eye and orbit. Chapman and Hall, London, pp 489–534Google Scholar
  7. 7.
    European Glaucoma Society, E (1998) Terminology and guidelines for glaucoma. Editrice DOGMA, Savona, ItalyGoogle Scholar
  8. 8.
    Flammer J (1996) To what extend are vascular factors involved in the pathogenesis of glaucoma? In: Kaiser HJ, Flammer J, Hendickson P (eds) Ocular blood flow: new insights into the pathogenesis of ocular diseases. Karger, Basel, pp 12–39Google Scholar
  9. 9.
    Fontana L, Poinoosawmy D et al (1998) Pulsatile ocular blood flow investigation in asymmetric normal tension glaucoma and normal subjects. Br J Ophthalmol 82:731–736Google Scholar
  10. 10.
    Fu BM, Adamson RH et al (1998) Test of a two-pathway model for small-solute exchange across the capillary wall. Am J Physiol 274:H2062–H2073Google Scholar
  11. 11.
    Grunwald JE, Piltz J et al (1998) Optic nerve and choroidal circulation in glaucoma. Investig Ophthalmol Vis Sci 39:2329–2336Google Scholar
  12. 12.
    Grunwald JE, Riva CE et al (1984) Retinal autoregulation in open-angle glaucoma. Ophthalmology 91:1690–1694Google Scholar
  13. 13.
    Hernandez MR, Andrzejewska WM et al (1990) Changes in the extracellular matrix of the human optic nerve head in primary open-angle glaucoma. Am J Ophthalmol 109:180–189Google Scholar
  14. 14.
    Johansson JO (1983) Inhibition of retrograde axoplasmic transport in rat optic nerve by increased IOP in vitro. Investig Ophthalmol Vis Sci 24:1552–1558Google Scholar
  15. 15.
    Loebl M, Schwartz B (1977) Fluorescein angiographic defects of the optic disc in ocular hypertension. Arch Ophthalmol 95:1980–1984Google Scholar
  16. 16.
    Michelson G, Langhans MJ et al (1998) Visual field defect and perfusion of the juxtapapillary retina and the neuroretinal rim area in primary open angle glaucoma. Graefe Arch Clin Exp Ophthalmol 236:80–85Google Scholar
  17. 17.
    Morrison JC, Dorman-Pease ME et al (1990) Optic nerve head extracellular matrix in primary optic atrophy and experimental glaucoma. Arch Ophthalmol 108:1020–1024Google Scholar
  18. 18.
    Nakao Y, Sakihama N et al (1994) Vascular permeability to sodium fluorescein in the rabbit cranial nerve root: possible correlation with normal cranial nerve enhancement on gadolinium-enhanced magnet resonance imaging. Eur Arch Otorhinolaryngol 251:457–460Google Scholar
  19. 19.
    Osborne NN, Ugarte M et al (2000) Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Surv Ophthalmol 43[Suppl 1]:102–128Google Scholar
  20. 20.
    Quigley HA, Addicks EM (1981) Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol 99:137–143Google Scholar
  21. 21.
    Rojanapongpun P, Drance SM et al (1993) Ophthalmic artery flow velocity in glaucomatous and normal subjects. Br J Ophthalmol 77:25–29Google Scholar
  22. 22.
    Schlingemann RO, Hofman P et al (1999) Increased expression of endothelial antigen PAL-E in human diabetic retinopathy correlates with microvascular leakage. Diabetologia 42:596–602Google Scholar
  23. 23.
    Schlingemann RO, van Hinsbergh VWM (1997) Role of vascular permeability factor/vascular endothelial growth factor. Br J Ophthalmol 81:501–512Google Scholar
  24. 24.
    Schlingemann RO, van Marle J et al (1999) Non-barrier capillaries in the optic nerve head. Ophthalmic Res 31[Suppl 1]:81Google Scholar
  25. 25.
    Schwartz B (1994) Circulatory defects of the optic disk and retina in ocular hypertension and high pressure open-angle glaucoma. Surv Ophthalmol 38[Suppl]:23–34Google Scholar
  26. 26.
    Schwartz B, Rieser JC et al (1977) Fluorescein angiographic defects of the optic disc in glaucoma. Arch Ophthalmol 95:1961–1974Google Scholar
  27. 27.
    Sonnsjö B (1992) Similarities between disc hemorrhages and thromboses of the retinal veins. Int Ophthalmol 16:235–238Google Scholar
  28. 28.
    Sonty S, Schwartz B (1980) Two-point fluorophotometry in the evaluation of glaucomatous optic disc. Arch Ophthalmol 98:1422–1426Google Scholar
  29. 29.
    Spaeth GL (1975) Fluorescein angiography: its contributions towards understanding the mechanisms of visual loss in glaucoma. Trans Am Ophthalmol Soc 73:491–553Google Scholar
  30. 30.
    Sponsel WE, DePaul KL et al (1990) Correlation of visual function and retinal leukocyte velocity in glaucoma. Am J Ophthalmol 109:49–54Google Scholar
  31. 31.
    Talusan ED, Schwartz B et al (1980) Fluorescein angiography of the optic disc: a longitudinal follow-up study. Arch Ophthalmol 98:1579–1587Google Scholar
  32. 32.
    Tielsch J, Katz J et al (1995) Hypertension, perfusion pressure, and primary open-angle glaucoma. Arch Ophthalmol 113:216–221PubMedGoogle Scholar
  33. 33.
    Trope GE, Salinas RG et al (1987) Blood viscosity in primary open-angle glaucoma. Can J Ophthalmol 22:202–204Google Scholar
  34. 34.
    Tso MOM, Shih CY et al (1975) Is there a blood brain barrier at the optic nerve head? Arch Ophthalmol 93:815–825Google Scholar
  35. 35.
    Tsukahara S (1978) Hyperpermeable disc capillaries in glaucoma. Adv Ophthalmol 35:65–72Google Scholar
  36. 36.
    Wolf S, Arend O et al (1993) Retinal hemodynamics using scanning laser ophthalmoscopy and hemorheology in chronic open-angle glaucoma. Ophthalmology 100:1561–1566Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Oliver Arend
    • 1
    Email author
  • Andreas Remky
    • 2
  • Niklas Plange
    • 2
  • Marion Kaup
    • 2
  • Bernard Schwartz
    • 3
  1. 1.Augenzentrum AlsdorfAlsdorfGermany
  2. 2.Department of OphthalmologyMedical School of the Technical University of AachenAachenGermany
  3. 3.School of MedicineTufts UniversityBostonUSA

Personalised recommendations