Visual evoked potentials during suppression in exotropic and esotropic strabismics: strabismic suppression objectified

  • Maurits V. Joosse
  • Danielle L. Esme
  • Rob J. Schimsheimer
  • Sandra A. M. Verspeek
  • Marleen H. L. Vermeulen
  • Ellen M. van Minderhout
Clinical Investigation



We performed an electrophysiological study in order to objectify suppression in strabismus. The extent of cortical involvement in the process of interocular suppression was also explored. Possible differences in the suppressive process of esotropic and exotropic strabismics were also studied.


An electroencephalographic recorder with eight leads was applied to the posterior one-third of the skull; three occipital, three parietal, and two temporal leads. We measured the activity of these visual cortical areas during stimulation of each eye under monocular as well as binocular viewing conditions with hemisinusoidal light pulses in a nature-like complex visual background. Recordings were made from six primary esotropic strabismic subjects and four primary exotropic and one consecutive exotropic strabismic subject. Also, five normal controls were studied.


A characteristic, triphasic response complex was found at approximately 80 ms following the start of each light pulse under monocular viewing conditions in the dominant and the nondominant eye. However, under dichoptic viewing conditions in the nondominant eye of all esotropic cases as well as in the nondominant eye of three of five exotropic cases, this response complex was completely absent. They showed approximately 100% reduction of their cortical response activity.


These results show the vast extent of the cortex that is involved in the suppressive process, giving a good insight in the power of suppression.


Esotropia Exotropia Suppression Strabismus Visual evoked potential 


  1. 1.
    Adams DL, Zeki S (2001) Functional organization of macaque V3 for stereoscopic depth. J Neurophysiol 86:2195–2203PubMedGoogle Scholar
  2. 2.
    Apkarian P, Levi D, Tyler CW (1981) Binocular facilitation in the visual-evoked potential of strabismic amblyopes. Am J Optom Physiol Opt 58:820–830PubMedGoogle Scholar
  3. 3.
    Bagolini B (1958) Technic for examination of binocular vision without introduction of dissociating elements: the striated glass test. Boll Ocul 37:195–209PubMedGoogle Scholar
  4. 4.
    Bagolini B (1976) Sensorial anomalies in strabismus (suppression, anomalous correspondence, amblyopia). Doc Ophthalmol 41:1–22Google Scholar
  5. 5.
    Blake R (1989) A neural theory of binocular rivalry. Psychol Rev 96:145–167CrossRefPubMedGoogle Scholar
  6. 6.
    Bonmassar G, Anami K, Ives J, Belliveau JW (1999) Visual evoked potential (VEP) measured by simultaneous 64-channel EEG and 3T fMRI. Neuroreport 10:1893–1897PubMedGoogle Scholar
  7. 7.
    Campos EC (1982) Binocularity in comitant strabismus: binocular visual fields studies. Doc Ophthalmol 53:249–281PubMedGoogle Scholar
  8. 8.
    Campos EC, Chiesi C (1983) Binocularity in comitant strabismus. II. Objective evaluation with visual evoked responses. Doc Ophthalmol 55:277–293PubMedGoogle Scholar
  9. 9.
    Chiesi C, Sargentini AD, Bolzani R (1984) Binocular visual perception in strabismics studied by means of visual evoked responses. Doc Ophthalmol 58:51–56PubMedGoogle Scholar
  10. 10.
    Cohen MS, Bookheimer SY (1994) Localization of brain function using magnetic resonance imaging. Trends Neurosci 17:268–277CrossRefPubMedGoogle Scholar
  11. 11.
    Fox PT, Miezin FM, Allman JM, Van Essen DC, Raichle ME (1987) Retinotopic organization of human visual cortex mapped with positron-emission tomography. J Neurosci 7:913–922PubMedGoogle Scholar
  12. 12.
    Franceschetti AT, Burian HM (1971) Visually evoked responses in alternating strabismus. Am J Ophthalmol 71:1292–1297PubMedGoogle Scholar
  13. 13.
    Fries P, Schroder JH, Singer W, Engel AK (2001) Conditions of perceptual selection and suppression during interocular rivalry in strabismic and normal cats. Vision Res 41:771–783Google Scholar
  14. 14.
    Giuseppe N, Andrea F (1983) Binocular interaction in visual-evoked responses: summation, facilitation and inhibition in a clinical study of binocular vision. Ophthalmic Res 15:261–264PubMedGoogle Scholar
  15. 15.
    Gulyas B, Roland PE (1994) Binocular disparity discrimination in human cerebral cortex: functional anatomy by positron emission tomography. Proc Natl Acad Sci USA 91:1239–1243Google Scholar
  16. 16.
    Herzau V (1980) Investigations on binocular visual fields in scotoma. Doc Ophthalmol 49:221–284PubMedGoogle Scholar
  17. 17.
    Hillyard SA, Anllo-Vento L (1998) Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci USA 95:781–787Google Scholar
  18. 18.
    Holopigian K (1989) Clinical suppression and binocular rivalry suppression: the effects of stimulus strength on the depth of suppression. Vision Res 29:1325–1333CrossRefPubMedGoogle Scholar
  19. 19.
    Horton JC, Hocking DR et al (1999) Metabolic mapping of suppression scotomas in striate cortex of macaques with experimental strabismus. J Neurosci 19:7111–7129PubMedGoogle Scholar
  20. 20.
    Joosse MV, Simonsz HJ, van Minderhout HM, de Jong PT, Noordzij B, Mulder PG (1997) Quantitative perimetry under binocular viewing conditions in microstrabismus. Vision Res 37:2801–2812CrossRefPubMedGoogle Scholar
  21. 21.
    Joosse MV, Simonsz HJ, van Minderhout EM, Mulder PG, de Jong PT (1999) Quantitative visual fields under binocular viewing conditions in primary and consecutive divergent strabismus. Graefes Arch Clin Exp Ophthalmol 237:538–545CrossRefGoogle Scholar
  22. 22.
    Joosse MV, Simonsz HJ, Spekreijse H, Mulder PG, van Minderhout HM (2000) The optimal stimulus to elicit suppression in small-angle convergent strabismus. Strabismus 8:233–242CrossRefPubMedGoogle Scholar
  23. 23.
    Leguire LE, Rogers GL, Bremer DL (1991) Visual-evoked response binocular summation in normal and strabismic infants. Defining the critical period. Invest Ophthalmol Vis Sci 32:126–133PubMedGoogle Scholar
  24. 24.
    Leguire LE, Rogers GL, Bremer DL (1995) Flash visual evoked response binocular summation in normal subjects and in patients with early-onset esotropia before and after surgery. Doc Ophthalmol 89:277–286PubMedGoogle Scholar
  25. 25.
    Leopold DA, Logothetis NK (1996) Activity changes in early visual cortex reflect monkeys’ percepts during binocular rivalry. Nature 379:549–553CrossRefPubMedGoogle Scholar
  26. 26.
    Mauguiere F, Ceranic B, Cooper R, Holder GE, Luxon LM, Pottinger RC Abnormal waveforms and diagnostic yield of evoked potentials. Clinical neurophysiology, vol 1, EMG, Nerve conduction and evoked potentials, Chap. 3.5:497Google Scholar
  27. 27.
    Moutoussis K, Zeki S (2002) Responses of spectrally selective cells in macaque area V2 to wavelengths and colors. J Neurophysiol 87:2104–2112PubMedGoogle Scholar
  28. 28.
    Ogle KN (1962) The visual space sense. Science 138:763–771Google Scholar
  29. 29.
    Sengpiel F, Blakemore C, Kind PC, Harrad R (1994) Interocular suppression in the visual cortex of strabismic cats. J Neurosci 14:6855–6871PubMedGoogle Scholar
  30. 30.
    Sengpiel F, Blakemore C, Harrad R (1995) Interocular suppression in the primary visual cortex: a possible neural basis of binocular rivalry. Vision Res 38:179–195CrossRefGoogle Scholar
  31. 31.
    Shipp S, Zeki S (1989) The organization of connections between areas V5 and V1 in macaque monkey visual cortex. Eur J Neurosci 1:309–332PubMedGoogle Scholar
  32. 32.
    Shipp S, Zeki S (1989) The organization of connections between areas V5 and V2 in macaque monkey visual cortex. Eur J Neurosci 1:333–384PubMedGoogle Scholar
  33. 33.
    Shipp S, Zeki S (2002) The functional organization of area V2. I. Specialization across stripes and layers. Vis Neurosci 19:187–210CrossRefPubMedGoogle Scholar
  34. 34.
    Shipp S, Zeki S (2002) The functional organization of area V2. II. The impact of stripes on visual topography. Vis Neurosci 19:211–231CrossRefPubMedGoogle Scholar
  35. 35.
    Sireteanu R, Fronius M (1989) Different patterns of retinal correspondence in the central and peripheral visual field of strabismics. Invest Ophthalmol Vis Sci 30:2023–2033PubMedGoogle Scholar
  36. 36.
    Sommer M, Meinhardt J, Volz HP (2003) Combined measurement of event-related potentials (ERPs) and fMRI. Acta Neurobiol Exp (Warsz.) 63:49–53Google Scholar
  37. 37.
    Tychsen L, Burkhalter A et al (1996) Functional and structural abnormalities of visual cortex in infantile strabismus. Klin Monatsbl Augenheilkd 208:18–22PubMedGoogle Scholar
  38. 38.
    Tychsen L, Burkhalter A et al (1997) Nasotemporal asymmetries in V1; ocular dominance columns of infant,adult and strabismic macaque monkeys. J Comp Neurol 388:32–46CrossRefPubMedGoogle Scholar
  39. 39.
    Tychsen L, Wong AMF et al (2004) Early vs delayed repair of infantile strabismus in macaque monkeys. II. Effects on motion visual evoked responses. Invest Ophtalmol Vis Sci 45:821–827CrossRefGoogle Scholar
  40. 40.
    Wright KW, Fox BE, Eriksen KJ (1990) PVEP evidence of true suppression in adult onset strabismus. J Pediatr Ophthalmol Strabismus 27:196–201PubMedGoogle Scholar
  41. 41.
    Zeki S, Shipp S (1989) Modular connections between areas V2 and V4 of macaque monkey visual cortex. Eur J Neurosci 1:494–506PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Maurits V. Joosse
    • 1
  • Danielle L. Esme
    • 1
  • Rob J. Schimsheimer
    • 2
  • Sandra A. M. Verspeek
    • 2
  • Marleen H. L. Vermeulen
    • 1
  • Ellen M. van Minderhout
    • 1
  1. 1.Department of OphthalmologyThe Hague Medical CenterThe HagueThe Netherlands
  2. 2.Department of NeurophysiologyThe Hague Medical CenterThe HagueThe Netherlands

Personalised recommendations