Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease

  • J. SebagEmail author


Posterior vitreous detachment (PVD) is the consequence of changes in the macromolecular structure of gel vitreous that result in liquefaction, concurrent with alterations in the extracellular matrix at the vitreo-retinal interface that allow the posterior vitreous cortex to detach from the internal limiting lamina of the retina. Gel liquefaction that exceeds the degree of vitreo-retinal dehiscence results in anomalous PVD (APVD). APVD varies in its clinical manifestations depending upon where in the fundus vitreo-retinal adhesion is strongest. At the periphery, APVD results in retinal tears and detachments. In the macula, APVD causes vitreo-macular traction syndrome, results in vitreoschisis with macular pucker or macular holes, or contributes to some cases of diabetic macular edema. At the optic disc and retina, APVD causes vitreo-papillary traction and promotes retinal and optic disc neovascularization. Unifying the spectrum of vitreo-retinal diseases into the conceptual framework of APVD underscores that to more effectively treat, and ultimately prevent, these disorders it is necessary to replicate the two components of an innocuous PVD, i.e., gel liquefaction and vitreo-retinal dehiscence. Pharmacologic vitreolysis is designed to mitigate against APVD by chemically breaking down vitreous macromolecules and weakening vitreo-retinal adhesion to safely detach the posterior vitreous cortex. This would not only facilitate surgery, but if performed early in the natural history of disease, it should prevent progressive disease.


Liquefaction Collagen Fibril Macular Hole Diabetic Macular Edema Vitreous Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Balazs EA (1961) Molecular morphology of the vitreous body. In: Smelser GK (ed) The structure of the eye. Academic, New York, pp 293–310Google Scholar
  2. 2.
    Balazs EA, Denlinger JL (1982) Aging changes in the vitreus. Aging and human visual function. Liss, New York, pp 45–57Google Scholar
  3. 3.
    Bishop PN (1996) The biochemical structure of mammalian vitreous. Eye 10:664–670PubMedGoogle Scholar
  4. 4.
    Bishop PN (2000) Structural macromolecules and supramolecular organisation of the vitreous gel. Prog Retin Eye Res 19:323–344CrossRefPubMedGoogle Scholar
  5. 5.
    Bishop PN, McLeod D, Reardon A (1999) Effects of hyaluronan lyase, hyaluronidase, and chondroitin ABC lyase on mammalian vitreous gel. Invest Ophthalmol Vis Sci 40:2173–2178PubMedGoogle Scholar
  6. 6.
    Chow DR, Williams GA, Trese MT, Margherio RR, Ruby AJ, Ferrone PJ (1999) Successful closure of traumatic macular holes. Retina 19:405–409CrossRefPubMedGoogle Scholar
  7. 7.
    Chu T, Lopez PF, Cano MR et al (1996) Posterior vitreoschisis—an echographic finding in proliferative diabetic retinopathy. Ophthalmology 103:315–322PubMedGoogle Scholar
  8. 8.
    Comper WD, Laurent TC (1978) Physiological functions of connective tissue polysaccharides. Physiol Rev 58:255PubMedGoogle Scholar
  9. 9.
    Foulds WS (1987) Is your vitreous really necessary? The role of the vitreous in the eye with particular reference to retinal attachment, detachment and the mode of action of vitreous substitutes (the 2nd Duke-Elder Lecture). Eye 1:641–664PubMedGoogle Scholar
  10. 10.
    Hageman GS, Johnson LV (1984) Lectin-binding glycoproteins in the vertebrate vitreous body and inner limiting membrane—tissue localization and biochemical characterization. J Cell Biol 99:179aGoogle Scholar
  11. 11.
    Hageman GS, Russell SR (1994) Chondroitinase-mediated disinsertion of the primate vitreous body. Invest Ophthalmol Vis Sci 35(ARVO):1260Google Scholar
  12. 12.
    Hesse L, Nebeling B, Schroeder B, Heller G, Kroll P (2000) Induction of posterior vitreous detachment in rabbits by intravitreal injection of tissue plasminogen activator following cryopexy. Exp Eye Res 70:31–39CrossRefPubMedGoogle Scholar
  13. 13.
    Hikichi T, Masanori K, Yoshida A (1999) Posterior vitreous detachment induced by injection of plasmin and sulfur hexafluoride in the rabbit vitreous. Retina 19:55–58PubMedGoogle Scholar
  14. 14.
    Hikichi T, Masanori K, Yoshida A (2000) Intravitreal injection of hyaluronidase cannot induce posterior vitreous detachment in the rabbit. Retina 20:195–198CrossRefPubMedGoogle Scholar
  15. 15.
    Jorge R, Oyamaguchi EK, Cardillo JA, Gobbi A, Laicine EM, Haddad A (2003) Intravitreal injection of dispase causes retinal hemorrhages in rabbit and human eyes. Curr Eye Res 26:107–112CrossRefPubMedGoogle Scholar
  16. 16.
    Kakehashi A, Schepens CL, de Sousa-Neto A, Jalkh AE, Trempe CL (1993) Biomicroscopic findings of posterior vitreoschisis. Ophthalmic Surg 24:846–850PubMedGoogle Scholar
  17. 17.
    Kobayashi S, Fujikawa S, Ohmae M (2000) Enzymatic synthesis of chondroitin and its derivatives catalyzed by hyaluronidase. J Am Chem Soc 125:14357–14369CrossRefGoogle Scholar
  18. 18.
    Maumenee IH (1979) Vitreoretinal degenerations as a sign of generalized connective tissue diseases. Am J Ophthalmol 88:432–449PubMedGoogle Scholar
  19. 19.
    Mayne R (2001) The eye. Connective tissue and its heritable disorders. Wiley-Liss, New York, pp 131–141Google Scholar
  20. 20.
    Mayne R, Brewton RG, Ren Z-H (1997) Vitreous body and zonular apparatus. In: Harding JJ (ed) Biochemistry of the eye. Chapman & Hall, London, pp 135–143Google Scholar
  21. 21.
    Oliviera LB, Tatebayashi M, Mahmoud TH et al (2001) Dispase facilitates posterior vitreous detachment during vitrectomy in young pigs. Retina 21:324–331CrossRefPubMedGoogle Scholar
  22. 22.
    Russell SR, Shepherd JD, Hageman GS (1991) Distribution of glycoconjugates in the human internal limiting membrane. Invest Ophthalmol Vis Sci 32:1986–1995PubMedGoogle Scholar
  23. 23.
    Scott JE (1992) The chemical morphology of the vitreous. Eye 6:553–555PubMedGoogle Scholar
  24. 24.
    Scott JE, Chen Y, Brass A (1992) Secondary and tertiary structures involving chondroitin and chondroitin sulphate in solution, investigated by rotary shadowing electron microscopy and computer simulation. Eur J Biochem 209:675–680PubMedGoogle Scholar
  25. 25.
    Sebag J (1987) Ageing of the vitreous. Eye 1:254–262PubMedGoogle Scholar
  26. 26.
    Sebag J (1987) Age-related changes in human vitreous structure. Graefes Arch Clin Exp Ophthalmol 225:89PubMedGoogle Scholar
  27. 27.
    Sebag J (1989) The vitreous: structure, function and pathobiology. Springer, New York Berlin HeidelbergGoogle Scholar
  28. 28.
    Sebag J (1991) Age-related differences in the human vitreo-retinal interface. Arch Ophthalmol 109:966–971PubMedGoogle Scholar
  29. 29.
    Sebag J (1992) Anatomy and pathology of the vitreo-retinal interface. Eye 6:541–552PubMedGoogle Scholar
  30. 30.
    Sebag J (1993) Abnormalities of human vitreous structure in diabetes. Graefes Arch Clin Exp Ophthalmol 231:257–260PubMedGoogle Scholar
  31. 31.
    Sebag J (1996) Diabetic vitreopathy. Ophthalmology 103:205–206PubMedGoogle Scholar
  32. 32.
    Sebag J (1997) Guest editorial: classifying posterior vitreous detachment—a new way to look at the invisible. Br J Ophthalmol 81:521–522PubMedGoogle Scholar
  33. 33.
    Sebag J (1998) Macromolecular structure of vitreous. Prog Polym Sci 23:415–446CrossRefGoogle Scholar
  34. 34.
    Sebag J (1998) Pharmacologic vitreolysis. Retina 18:1–3PubMedGoogle Scholar
  35. 35.
    Sebag J (1998) Vitreous—from biochemistry to clinical relevance. In: Tasman W, Jaeger EA (eds) Duane’s foundations of clinical ophthalmology, vol 1. Lippincott Williams & Wilkins, Philadelphia (Chapter 16)CrossRefGoogle Scholar
  36. 36.
    Sebag J (2002) Is pharmacologic vitreolysis brewing? Retina 22:1–3PubMedGoogle Scholar
  37. 37.
    Sebag J (2004) Seeing the invisible—the challenge of imaging vitreous. J Biomed Opt 9:38–46CrossRefPubMedGoogle Scholar
  38. 38.
    Sebag J, Balazs EA (1989) Morphology and ultrastructure of human vitreous fibers. Invest Ophthalmol Vis Sci 30:1867–1871PubMedGoogle Scholar
  39. 39.
    Sebag J, Hageman GS (2000) Interfaces. Eur J Ophthalmol 10:1–3PubMedGoogle Scholar
  40. 40.
    Sebag J, Buckingham B, Charles MA, Reiser K (1992) Biochemical abnormalities in vitreous of humans with proliferative diabetic retinopathy. Arch Ophthalmol 110:1472–1479PubMedGoogle Scholar
  41. 41.
    Sebag J, Nie S, Reiser KA, Charles MA, Yu NT (1994) Raman spectroscopy of human vitreous in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 35:2976–2980PubMedGoogle Scholar
  42. 42.
    Sebag J, Ansari RR, Dunker S, Suh SI (1999) Dynamic light scattering of diabetic vitreopathy. Diabetes Technol Ther 1:169–176CrossRefPubMedGoogle Scholar
  43. 43.
    Sheehan JK, Atkins EDT, Nieduszynski IA (1975) X-ray diffraction studies on the connective tissue polysaccharides. Two dimensional packing scheme for threefold hyaluronic chains. J Mol Biol 91:153–163PubMedGoogle Scholar
  44. 44.
    Snead MP, Yates JRW (1999) Clinical and molecular genetics of Stickler syndrome. J Med Genet 36:353PubMedGoogle Scholar
  45. 45.
    Tezel TH, Del Priore LV, Kaplan HJ (1998) Posterior vitreous detachment with dispase. Retina 18:7–15PubMedGoogle Scholar
  46. 46.
    Trese MT, Williams GA, Hartzer MK (2000) A new approach to stage 3 macular holes. Ophthalmology 107:1607–1611CrossRefPubMedGoogle Scholar
  47. 47.
    Unal M, Peyman GA (2000) The efficacy of plasminogen–urokinase combination in inducing posterior vitreous detachment. Retina 20:69–75CrossRefPubMedGoogle Scholar
  48. 48.
    Valmaggia C, Willekens B, de Smet M (2003) Microplasmin induced vitreolysis in porcine eyes. Invest Ophthalmol Vis Sci 44(ARVO):3050CrossRefGoogle Scholar
  49. 49.
    Verstraeten T, Chapman C, Hartzer M, Winkler BS, Trese MT, Williams GA (1993) Pharmacologic induction of PVD in the rabbit. Arch Ophthalmol 111:849PubMedGoogle Scholar
  50. 50.
    Williams JG, Trese MT, Williams GA, Hartzer MK (2001) Autologous plasmin enzyme in the surgical management of diabetic retinopathy. Ophthalmology 108:1902–1905CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Clinical Ophthalmology, Doheny Eye InstituteUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.VMR InstituteHuntington BeachUSA

Personalised recommendations