Deficits of spatial localization in children with strabismic amblyopia

Clinical Investigation



Besides loss of visual acuity and binocularity, spatial localization deficits (comprising both increased spatial uncertainty and spatial distortions) are an important feature of strabismic amblyopia. Although they have been extensively investigated in adult amblyopes, there are still many open questions concerning their substrate and relationship to clinical parameters. Our aim was to develop a procedure for assessing vertical alignment, which enabled us to find out whether children with strabismic amblyopia had similar spatial localization deficits, and their relation to the children’s clinical condition.


Vertical alignment was assessed in children by comparing the visual direction in space of three loci along the vertical meridian, separated by 5 deg of visual angle. We tested alignment in the amblyopic and dominant eyes of 32 strabismic and in both eyes of 35 control children from 4.5 to 10 years, together with a careful orthoptic examination.


In the amblyopic eyes, increased uncertainty and systematic distortions outside the normal range occurred. Large angles of deviation and pathological fixation patterns were necessary, but not sufficient conditions for gross spatial deficits to occur. The fellow dominant eyes showed spatial localization similar to normal eyes.


Children with strabismic amblyopia exhibited localization deficits and relationship to clinical data similar to those in adult amblyopes. These data are important for further investigations about the substrate, plasticity and the clinical relevance of perceptual distortions.


Test Line Control Child Amblyopia Reference Stimulus Vertical Alignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Author M.F. was supported by grants from the Deutsche Forschungsgemeinschaft (Fr 1312/1-1 and 1-2). Thanks are due to Professors C. Ohrloff and W. Singer for support of this study, to the ophthalmologists and orthoptists who referred patients to our lab and made careful orthoptic examinations (PD Dr. D. Friedrich, Dr. U. Aschoff, M. Theisen, I. Bachert, A. Büttner-Cordey, H. Bartz, B. Herrmann, M. Murtro), and to our patients and their parents for their collaboration. We gratefully acknowledge the secretarial assistance of S. Klekar, help with statistics by Dr. Tews from the Biomathematics Department, and M. Mulvahill for language assistance.


  1. 1.
    Barrett BT, Pacey JE, Bradley A, Thibos LN, Morrill P (2003) Nonveridical visual perception in human amblyopia. Invest Ophthalmol Vis Sci 44:1555–1567CrossRefPubMedGoogle Scholar
  2. 2.
    Bedell HE, Flom MC (1981) Monocular spatial distortion in strabismic amblyopia. Invest Ophthalmol Vis Sci 20:263–268PubMedGoogle Scholar
  3. 3.
    Bedell HE, Flom MC, Barbeito R (1985) Spatial aberrations and acuity in strabismus and amblyopia. Invest Ophthalmol Vis Sci 26:909–916PubMedGoogle Scholar
  4. 4.
    Burkhalter A (1993) Development of forward and feedback connections between areas V1 and V2 of human visual cortex. Cerebral Cortex 3:476–487PubMedGoogle Scholar
  5. 5.
    Burkhalter A, Bernardo KL, Charles V (1993) Development of local circuits in human visual cortex. J Neurosci 13:1916–1931PubMedGoogle Scholar
  6. 6.
    Cleary M, Thompson CM (2001) Diagnosis of eccentric fixation using a calibrated ophthalmoscope: defining clinically significant limits. Ophthalmic Physiol Opt 21:461–469CrossRefPubMedGoogle Scholar
  7. 7.
    Crist RE, Kapadia MK, Westheimer G, Gilbert CD (1997) Perceptual learning of spatial localization: specificity for orientation, position, and context. J Neurophysiol 78:2889–2894PubMedGoogle Scholar
  8. 8.
    Demanins R, Hess RF (1996) Effect of exposure duration on spatial uncertainty in normal and amblyopic eyes. Vision Res 36:1189–1193CrossRefPubMedGoogle Scholar
  9. 9.
    Flom MC (1991) Contour interaction and the crowding effect. Prob Optom 3:237–275Google Scholar
  10. 10.
    Freeman RD, Bradley A (1980) Monocularly deprived humans: nondeprived eye has supernormal vernier acuity. J Neurophysiol 43:1645–1653PubMedGoogle Scholar
  11. 11.
    Fronius M (2002) Amblyopietherapie in der Diskussion. Ophthalmologe 99:747–751CrossRefPubMedGoogle Scholar
  12. 12.
    Fronius M, Sireteanu R (1989) Monocular geometry is selectively distorted in the central visual field of strabismic amblyopes. Invest Ophthalmol Vis Sci 30:2034–2044PubMedGoogle Scholar
  13. 13.
    Fronius M, Sireteanu R (1992a) Lokalisationsstörungen bei Schielamblyopen: horizontale Streckenteilung und vertikale relative Lokalisation. Klin Monatsbl Augenheilkd 201:22–29PubMedGoogle Scholar
  14. 14.
    Fronius M, Sireteanu R (1992b) Spatial localization errors in strabismic amblyopes: partitioning of horizontal lines and vertical alignment. Perception 21:39PubMedGoogle Scholar
  15. 15.
    Fronius M, Sireteanu R (1995) Distortions of visual space perception in strabismic amblyopia. Strabismus 3:43–45Google Scholar
  16. 16.
    Fronius M, Sireteanu R, Fuisting B, Zubcov A (1995) A test for assessing spatial localization in strabismic children. Perception: 24, 53Google Scholar
  17. 17.
    Fronius M, Zubcov A, Sireteanu R (1998) Spatial localization changes during occlusion therapy in children with strabismic amblyopia. Perception 27:161Google Scholar
  18. 18.
    Fronius M, Zubcov A, Sireteanu R, Büttner A (1999) Dynamics of spatial localization changes during occlusion therapy in children with strabismic amblyopia. Invest Ophthalmol Vis Sci 40 [Suppl]:307Google Scholar
  19. 19.
    Fronius M, Sireteanu R, Zubcov A, Büttner A (2000) Preliminary report: monocular spatial localization in children with strabismic amblyopia. Strabismus 8:243–249CrossRefPubMedGoogle Scholar
  20. 20.
    Fuisting B, Haase W (1989) Gestörte relative Lokalisation bei Amblyopie vor und nach Behandlung. Z Prakt Augenheilkd 10:210–216Google Scholar
  21. 21.
    Gingras G, Mitchell DE, Hess RF (1999) The spatial localization deficit in visually deprived kittens. Invest Ophthalmol Vis Sci 40 [Suppl]:287Google Scholar
  22. 22.
    Haase W (1989) Amblyopie-Forschung unter klinischen Gesichtspunkten. Hamburger Ärztebl 10:375–382Google Scholar
  23. 23.
    Haase W, Hohmann A (1982) Ein neuer Test (C-Test) zur quantitativen Prüfung der Trennschwierigkeiten (“crowding”)—Ergebnisse bei Amblyopie und Ametropie. Klin Monatsbl Augenheilkd 180:210–215PubMedGoogle Scholar
  24. 24.
    Hess RF, Field DJ (1994) Is the spatial deficit in strabismic amblyopia due to loss of cells or an uncalibrated disarray of cells? Vision Res 24:3397–3406CrossRefGoogle Scholar
  25. 25.
    Hess RF, Holliday IE (1992) The spatial localization deficit in amblyopia. Vision Res 32:1319–1339CrossRefPubMedGoogle Scholar
  26. 26.
    Hess RF, Campbell FW, Greenhalgh T (1978) On the nature of the neural abnormality in human amblyopia: neural aberrations and neural sensitivity loss. Pflügers Arch 377:201–207Google Scholar
  27. 27.
    Hess RF, McIlhagga W, Field DJ (1997) Contour integration in strabismic amblyopia: sufficiency of an explanation based on positional uncertainty. Vision Res 37:3145–3161CrossRefPubMedGoogle Scholar
  28. 28.
    Hess RF, Wang Y, Demanins R, Wilkinson F, Wilson H (1999) A deficit in strabismic amblyopia for global shape detection. Vision Res 39:901–914CrossRefPubMedGoogle Scholar
  29. 29.
    Kiorpes L (1992) Effect of strabismus on the development of vernier acuity and grating acuity in monkeys. Vis Neurosci 9:253–259PubMedGoogle Scholar
  30. 30.
    Kiorpes L, Movshon JA (2002) Extended developmental time course for global visual functions in primates. J Vision 2(10): 47aGoogle Scholar
  31. 31.
    Kiorpes L, Kiper DC, O’Keefe LP, Cavanaugh JR, Movshon JA (1998) Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia. J Neurosci 18:6411–6424PubMedGoogle Scholar
  32. 32.
    Kovács I (2000) Human development of perceptual organization. Vision Res 40:1301–1310CrossRefPubMedGoogle Scholar
  33. 33.
    Kovács I, Polat U, Pennefather PM, Chandna A, Norcia AM (2000) A new test of contour integration deficits in patients with a history of disrupted binocular experience during visual development. Vision Res 40:1775–1783CrossRefPubMedGoogle Scholar
  34. 34.
    Lagrèze W, Sireteanu R (1991) Two-dimensional spatial distortions in human strabismic amblyopia. Vision Res 31:1271–1288CrossRefPubMedGoogle Scholar
  35. 35.
    Lei H, Schuchard RA (1997) Using two preferred retinal loci for different lighting conditions in patients with central scotomas. Invest Ophthalmol Vis Sci 38:1812–1818PubMedGoogle Scholar
  36. 36.
    Levi DM, Klein SA (1985) Vernier acuity, crowding and amblyopia. Vision Res 25:979–991CrossRefPubMedGoogle Scholar
  37. 37.
    Levi DM, Klein SA (2003) Noise provides some new signals about the spatial vision of amblyopes. J Neurosci 23:2522–2526PubMedGoogle Scholar
  38. 38.
    Levi DM, Klein SA, Yap YL (1987) Positional uncertainty in peripheral and amblyopic vision. Vision Res 27:581–597CrossRefPubMedGoogle Scholar
  39. 39.
    Löwel S, Singer W (1992) Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science 255:209–212PubMedGoogle Scholar
  40. 40.
    McGraw P, Winn B, Whitaker D, McFazdean R (1998) Positional acuity in amblyopia: does a perceptual consequence of neural recruitment exist? Ophthalmic Physiol Opt 18:423–429PubMedGoogle Scholar
  41. 41.
    Noorden GK von (1990) Binocular vision and ocular motility. Mosby, St. LouisGoogle Scholar
  42. 42.
    Polat U, Sagi D, Norcia AM (1997) Abnormal long-range spatial interactions in amblyopia. Vision Res 37:737–744CrossRefPubMedGoogle Scholar
  43. 43.
    Pugh M (1958) Visual distortion in amblyopia. Br J Ophthalmol 42:449–460PubMedGoogle Scholar
  44. 44.
    Rentschler I, Hilz R (1985) Amblyopic processing of positional information. I. Vernier acuity. Exp Brain Res 60:270–278PubMedGoogle Scholar
  45. 45.
    Roelfsema P, König P, Engel A, Sireteanu R, Singer W (1994) Reduced synchronization in the visual cortex of cats with strabismic amblyopia. Eur J Neurosci 6:1645–1655PubMedGoogle Scholar
  46. 46.
    Simmers AJ, Gray LS, McGraw PV, Winn B (1999) Functional visual loss in amblyopia and the effect of occlusion therapy. Invest Ophthalmol Vis Sci 40:2859–2871PubMedGoogle Scholar
  47. 47.
    Singer W (1995) Development and plasticity of cortical processing architectures. Science 270:758–764PubMedGoogle Scholar
  48. 48.
    Sireteanu R, Fronius M (1989) Different patterns of retinal correspondence in the central and peripheral visual field of strabismics. Invest Ophthalmol Vis Sci 30:2023–2033PubMedGoogle Scholar
  49. 49.
    Sireteanu R, Rieth C (1992) Texture segregation in infants and children. Behav Brain Res 49:133–139PubMedGoogle Scholar
  50. 50.
    Sireteanu R, Kellerer R, Boergen K-P (1984) The development of the peripheral visual acuity in human infants. A preliminary study. Hum Neurobiol 3:81–85PubMedGoogle Scholar
  51. 51.
    Sireteanu R, Lagrèze WD, Constantinescu DH (1993) Distortions in two-dimensional visual space perception in strabismic observers. Vision Res 33:677–690CrossRefPubMedGoogle Scholar
  52. 52.
    Sireteanu R, Fronius M, Constantinescu DH (1994) The development of visual acuity in the peripheral visual field of human infants: Binocular and monocular measurements. Vision Res 34:1659–1671CrossRefPubMedGoogle Scholar
  53. 53.
    Tychsen L, Burkhalter A, Wong A (2002) Paucity of horizontal connections for binocular vision within primary visual cortex of naturally-strabismic macaque. ARVO abstractGoogle Scholar
  54. 54.
    vom Hofe K (1930) Untersuchungen über das Sehen in Fällen von Schielamblyopie. Klin Monatsbl Augenheilkd 85:79Google Scholar
  55. 55.
    Yuodelis C, Hendrickson A (1986) A qualitative and quantitative analysis of the human fovea during development. Vision Res 26:847–855CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Maria Fronius
    • 1
    • 2
  • Ruxandra Sireteanu
    • 1
    • 3
    • 4
  • Alina Zubcov
    • 2
  1. 1.Max Planck Institute for Brain ResearchFrankfurt/MainGermany
  2. 2.Department of Paediatric OphthalmologyUniversity Eye Hospital Frankfurt/MainGermany
  3. 3.Department of PsychologyJ.W. Goethe UniversityFrankfurt/MainGermany
  4. 4.Department of Biomedical EngineeringBoston UniversityBostonUSA

Personalised recommendations