Distribution of scotoma pattern related to chiasmal lesions with special reference to anterior junction syndrome

  • Ulrich Schiefer
  • Melanie Isbert
  • Eva Mikolaschek
  • Ingrid Mildenberger
  • Elke Krapp
  • Jan Schiller
  • Solon Thanos
  • William Hart
Clinical Investigation



To evaluate pathogenetic mechanisms and frequency distribution of visual field defects (VFDs) in patients with chiasmal lesions. Secondly, to reconsider the existence of “Wilbrand’s knee” as far as referable to the anterior junction syndrome.


Consecutive visual field records related to chiasmal lesions were retrieved from the Tuebingen Perimetric Database. In all cases, at least one eye was examined with the Tuebingen Automated Perimeter using a standardized grid of 191 static targets within the central 30° visual field, and a threshold-related, slightly supraliminal strategy. VFDs were classified according to standard neuro-ophthalmological categories.


Results from 153 consecutive patients (65 male, 88 female) were evaluable. The majority (65%) of chiasmal lesions was due to pituitary adenoma, followed by craniopharyngioma (12%), astrocytoma (9%), and meningioma (8%). Vascular lesions in this region occurred rarely (2%). Three per cent of all patients had no final diagnosis. The majority (22%) of scotomas was attributable to involvement of the temporal hemifield in both eyes, with true bitemporal hemianopia being a very rare event (1%). Anterior junction syndrome, characterized by advanced visual field loss affecting the visual field centre in one eye and (possibly subtle) defects respecting the vertical midline in the fellow eye, was the second most frequent classifiable VFD (13%). Homonymous hemianopic VFDs occurred in 11% of all cases. Nine per cent of all patients exhibited monocular VFDs which did not respect the vertical midline, whereas in 3% of the subjects the monocular VFDs did not cross the vertical meridian. Binasal defects and posterior junction syndrome also occurred seldom (<1%). Nineteen per cent of all visual field records of patients with chiasmal lesions had results, which could not be classified unequivocally, and an identical portion was rated normal.


In patients with chiasmal lesions, incomplete involvement of the temporal hemifields in both eyes was the most frequent event (22%), followed by anterior junction syndrome (13%). The latter entity at least clinically indicates the proximity of the pre-chiasmal ipsilateral optic nerve and decussating fibres emanating from the inferior nasal hemiretina of the fellow eye. However, this cannot provide conclusive evidence for the existence of anterior Wilbrand’s knee.


  1. 1.
    Alvarez-Bolado G, Schwarz M, Gruss P (1997) Pax-2 in the chiasm. Cell Tissue Res 290:197–200PubMedGoogle Scholar
  2. 2.
    Apkarian P, Eckhardt PG, van Schooneveld MJ (1991) Detection of optic pathway misrouting in the human albino neonate. Neuropediatrics 22:211–215PubMedGoogle Scholar
  3. 3.
    Apkarian P, Bour LJ, Barth PG, Wenniger-Prick L, Verbeeten B Jr (1995) Non-decussating retinal-fugal fibre syndrome. An inborn achiasmatic malformation associated with visuotopic misrouting, visual evoked potential ipsilateral asymmetry and nystagmus. Brain 118:1195–1216PubMedGoogle Scholar
  4. 4.
    Aulhorn E (1974) Gesichtsfeldausfälle bei sellären und parasellären Prozessen. Ber Zusammenkunft Dtsch Ophthalmol Ges :7221–7229Google Scholar
  5. 5.
    Aulhorn E, Harms H (1972) Visual perimetry. In: Autrum H, Jung R, Loewenstein WR, Mackay C, Teuber HL (eds) Handbook of sensory physiology Vol. VII/4 Visual Psychophysics. Springer, Berlin, pp 102–145Google Scholar
  6. 6.
    Bajandas FJ, Kline LB (1988) Neuro-Ophthalmology Review Manual. Slack, Thorofare, USAGoogle Scholar
  7. 7.
    Bear CA, Kerrison JB, Lynn M, Newman SA, Newman NJ (2000) Stages of improvement in visual fields following pituitary tumor resection. Invest Ophthalmol Vis Sci 41 [Suppl]:313Google Scholar
  8. 8.
    Biousse V, Mendicino ME, Simon DJ, Newman NJ (1998) The ophthalmology of intracranial vascular abnormalities. Am J Ophthalmol 125:527–544PubMedGoogle Scholar
  9. 9.
    Birgbauer E, Oster SF, Severin CG, Sretavan DW (2001) Retinal axon growth cones respond to EphB extracellular domains as inhibitory axon guidance cues. Development 128:3041–3048PubMedGoogle Scholar
  10. 10.
    Blamires TL, Reeves BC (1996) Vision defects in patients with peri-chiasmal lesions. Optom Vis Sci 73:572–578PubMedGoogle Scholar
  11. 11.
    Burde RM, Savino PJ, Trobe JD (1992) Clinical decisions in neuroophthalmology. Mosby, St. LouisGoogle Scholar
  12. 12.
    Bynke H (1986) Pituitary adenomas with ocular manifestations. Neuroophthalmology 6:303–311Google Scholar
  13. 13.
    Dannheim F (1977) Perimetrie beim Chiasmasyndrom, schwellennahe und überschwellige Reize. Klin Monatsbl Augenheilkd 171:468–477PubMedGoogle Scholar
  14. 14.
    Deliganis AV, Geyer JR, Berger MS (1996) Prognostic significance of type 1 neurofibromatosis (von Recklinghausen disease) in childhood optic glioma. Neurosurgery 38:1114–1118PubMedGoogle Scholar
  15. 15.
    Dureau P, Attie-Bitach T, Salomon R, Bettembourg O, Amiel J, Uteza Y, Dufier JL (2001) Renal coloboma syndrome. Ophthalmology 108:1912–1916PubMedGoogle Scholar
  16. 16.
    Freitag H-J, Grzyska U, Zeumer H (1990) Möglichkeiten der interventionellen Neuroradiologie. Dt Ärzteblatt 87:23–27Google Scholar
  17. 17.
    Gittinger JW (1998) Tumors of the pituitary gland. In: Miller NR, Newman NJ (eds) Walsh & Hoyt’ s clinical neuro-ophthalmology. Williams & Wilkins, Baltimore, pp 2142–2221Google Scholar
  18. 18.
    Glaser JS (1990) Neuro-ophthalmology, 2nd edn. Lippincott, PhiladelphiaGoogle Scholar
  19. 19.
    Groden C, Freitag H-J (1998) Fortschritte in der ophthalmologischen Neuroradiologie. Z Prakt Augenheilkd 19:29–32Google Scholar
  20. 20.
    Gruss P, Walther C (1992) Pax in development. Cell 69:719–722PubMedGoogle Scholar
  21. 21.
    Guillery RW (1991) Rules that govern the development of the pathways from the eye to the optic tract in mammals. In: Lam DM, Shatz CJ (eds) Development of the visual systems. MIT Press, Cambridge, Massachusetts, pp 153–171Google Scholar
  22. 22.
    Guillery RW, Okoro AN, Witkop CJ Jr (1975) Abnormal visual pathways in the brain of a human albino. Brain Res 96:373–377PubMedGoogle Scholar
  23. 23.
    Guillery RW, Mason CA, Taylor JSH (1995) Developmental determinants at the mammalian optic chiasm. J Neurosci 15:4727–4737PubMedGoogle Scholar
  24. 24.
    Hollenhorst RW, Younge BR (1973) Ocular manifestations produced by adenomas of the pituitary gland: analysis of 1000 cases. In: Kohler PO, Ross GT (eds) Diagnosis and treatment of pituitary tumors. American Elsevier, New York, pp 53–68Google Scholar
  25. 25.
    Holmes JM, Droste PJ, Beck RW (1998) The natural history of acute traumatic sixth nerve palsy. Invest Ophthalmol Vis Sci 39 [Suppl]:153Google Scholar
  26. 26.
    Horton J (1995) Wilbrand’s knee 1904–1995: R.I.P. In: Hoyt WF (ed) An update in neuro-ophthalmology. UCSF, San Francisco, California, pp 27–38Google Scholar
  27. 27.
    Hoyt WF, Luis O (1962) Visual fiber anatomy in the infrageniculate pathway of the primate. Arch Ophthalmol 68:94–106PubMedGoogle Scholar
  28. 28.
    Huber A (1977) Chiasmasyndrome: Klinik. Klin Monatsbl Augenheilkd 170:266–278PubMedGoogle Scholar
  29. 29.
    Huber A (1988) Homonyme Hemianopsie bei Hirntumoren. Klin Monatsbl Augenheilkd 192:543–550PubMedGoogle Scholar
  30. 30.
    Huber A, Kömpf D (1998) Klinische Neuroophthalmologie. Thieme, StuttgartGoogle Scholar
  31. 31.
    Ikeda H, Yoshimoto T (1995) Visual disturbances in patients with pituitary adenoma. Acta Neurol Scand 92:157–160PubMedGoogle Scholar
  32. 32.
    Jansonius NM, van der Vliet TM, Cornelissen FW, Pott JW, Kooijman AC (2001) A girl without a chiasm: electrophysiologic and MRI evidence for the absence of crossing optic nerve fibers in a girl with a congenital nystagmus. J Neuroophthalmol 21:26–29PubMedGoogle Scholar
  33. 33.
    Jeffery G (2001) Architecture of the optic chiasm and the mechanisms that sculpt its development. Physiol Rev 81:1393–1414PubMedGoogle Scholar
  34. 34.
    Koshiba-Takeuchi K, Takeuchi JK, Matsumoto K, Momose T, Uno K, Hoepker V, Ogura K, Takahashi N, Nakamura H, Yasuda K, Ogura T (2000) Tbx5 and the retinotectum projection. Science 287:134–137PubMedGoogle Scholar
  35. 35.
    Kupersmith MJ, Straga J, Zeiffer B, Kraker R (2001) Junctional scotoma in acute optic neuritis or inflammation of the ‘knee’. Invest Ophthalmol Vis Sci 42 [Suppl]:326Google Scholar
  36. 36.
    Lachenmayr BJ, Buser A (1993) Refraktion und Gesichtsfeld. Der Augenarzt 27:114–120Google Scholar
  37. 37.
    Lagrèze WA, Kommerell G (2002) Gesichtsfeldausfälle. In: Kampik A, Grehn F (eds) Augenärztliche Differentialdiagnose. Thieme, Stuttgart, pp 160–168Google Scholar
  38. 38.
    Legouis R, Cohen-Salmon M, Del C, I, Petit C (1994) Isolation and characterization of the gene responsible for the X chromosome-linked Kallmann syndrome. Biomed Pharmacother 48:241–246Google Scholar
  39. 39.
    Lim WK, Aung T, Foster PJ, Seah SK, Wu HM, Lim ATH, Lee L, Chew SJ (2000) The visual field in eyes with tilted optic discs. Invest Ophthalmol Vis Sci 41 [Suppl]:284Google Scholar
  40. 40.
    Manor RS, Ouaknine GE, Matz S, Shalit MN (1980) Nasal visual field loss with intracranial lesions of the optic nerve pathways. Am J Ophthalmol 90:1–10PubMedGoogle Scholar
  41. 41.
    Miller NR (1988) Walsh and Hoyt’s clinical neuro-ophthalmology, Vol 3. Williams & Wilkins, BaltimoreGoogle Scholar
  42. 42.
    Miller NR (1991) Walsh and Hoyt’s clinical neuro-ophthalmology. Vol. 4. William & Wilkins, BaltimoreGoogle Scholar
  43. 43.
    Müller M, Holländer H (1988) A small population of retinal ganglion cells projecting to the retina of the other eye. An experimental study in the rat and the rabbit. Exp Brain Res 71:611–617PubMedGoogle Scholar
  44. 44.
    Oster SF, Sretavan DW (2003) Connecting the eye to the brain: the molecular basis of ganglion cell axon guidance. Br J Ophthalmol 87:639–645PubMedGoogle Scholar
  45. 45.
    Sachsenweger R (1982) Tumoren des 3. Ventrikels. In: Neuroophthalmologie. Thieme, Stuttgart, pp 130–131Google Scholar
  46. 46.
    Schatz NJ, Schlezinger NS (1976) Noncompressive causes of chiasmal disease. In: Burde RM (ed) Symposium on neuro-ophthalmology. Mosby, St. Louis pp 91–97Google Scholar
  47. 47.
    Schiefer U, Wilhelm H (1995) Gesichtsfeld-Kompendium. Klin Monatsbl Augenheilkd 206:206–238PubMedGoogle Scholar
  48. 48.
    Schwarz M, Cecconi F, Bernier G, Andrejewski N, Kammandel B, Wagner M, Gruss P (2000) Spatial specification of mammalian eye territories by reciprocal transcriptional repression of Pax2 and Pax6. Development 127:4325–4334PubMedGoogle Scholar
  49. 49.
    Silver J (1984) Studies on the factors that govern directionality of axonal growth in the embryonic optic nerve and at the chiasm of mice. J Comp Neurol 223:238–251PubMedGoogle Scholar
  50. 50.
    Stangel M, Vogeley KT, Jandeck C, Boegner F, Marx P, Koch HC (1998) Septooptische Dysplasie (de-Morsier-Syndrom). Nervenarzt 69:352–356CrossRefPubMedGoogle Scholar
  51. 51.
    Thanos S (1999) Genesis, neurotrophin responsiveness, and apoptosis of a pronounced direct connection between the two eyes of the chick embryo: a natural error or a meaningful developmental event? J Neurosci 19:3900–3917PubMedGoogle Scholar
  52. 52.
    Trobe JD, Tao HH, Schuster JJ (1984) Perichiasmal tumors: diagnostic and prognostic features. Neurosurgery 15:391–399PubMedGoogle Scholar
  53. 53.
    Viggiano D, Pirolo L, Cappabianca S, Passiatore C (2002) Testing the model of optic chiasm formation in human beings. Brain Res Bull 59:111–115PubMedGoogle Scholar
  54. 54.
    Walsh TJ (1996) Visual fields. Examination and interpretation, 2nd edn. American Academy of Ophthalmology, San FranciscoGoogle Scholar
  55. 55.
    Wilbrand HL (1926) Schema des Verlaufs der Sehnervenfasern durch das Chiasma. Z Prakt Augenheilkd 59:135–144Google Scholar
  56. 56.
    Wilbrand H, Saenger A (1904) Die Neurologie des Auges. Bergmann, WiesbadenGoogle Scholar
  57. 57.
    Williams RW, Borodkin M, Rakic P (1991) Growth cone distribution patterns in the optic nerve of fetal monkeys: implications for mechanisms of axon guidance. J Neurosci 11:1081–1094PubMedGoogle Scholar
  58. 58.
    Yuanxiu L, Hua G, Yong Z (1994) Vascular architecture of the human optic chiasma and bitemporal hemianopia. Chin Med Sci J 9:38–44PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Ulrich Schiefer
    • 1
  • Melanie Isbert
    • 1
  • Eva Mikolaschek
    • 1
  • Ingrid Mildenberger
    • 1
  • Elke Krapp
    • 1
  • Jan Schiller
    • 1
  • Solon Thanos
    • 2
  • William Hart
    • 3
  1. 1.Department of Pathophysiology of Vision and Neuro-OphthalmologyUniversity Eye HospitalTübingenGermany
  2. 2.Department of Experimental OphthalmologyUniversity Eye HospitalMünsterGermany
  3. 3.Department of Ophthalmology and Visual Science, School of MedicineWashington University St. LouisSt. LouisUSA

Personalised recommendations