Lensectomy and vitrectomy decrease the rate of photoreceptor loss in rhodopsin P347L transgenic pigs

  • Tamer H. Mahmoud
  • Brooks W. McCuenIIEmail author
  • Ying Hao
  • Suk J. Moon
  • Misako Tatebayashi
  • Sandra Stinnett
  • Robert M. Petters
  • Fulton Wong
Laboratory Investigation



Photoreceptor degeneration in retinitis pigmentosa (RP) runs an inevitable, gradually progressive course. A wide variety of growth factors of different origins have been shown to slow the rate of degeneration in some rodent models of RP. Recently, lens-derived neurotrophic factors have been shown to rescue degenerating ganglion cells in crush models of the optic nerve. Our objective was to evaluate the potential rescue effect of lensectomy and vitrectomy (L&V) on photoreceptor degeneration in a large-animal model, the rhodopsin P347L transgenic pig.


We operated on one eye of each of 49 3-week-old pigs—15 vitrectomies and 34 L&V, 6 of which received steroids. Retinal paraffin sections were prepared for all eyes, in addition to immunohistochemistry in four eyes, 8 weeks after L&V.


At eight weeks after L&V, operated eyes showed significantly more nuclei in the outer nuclear layer (ONL) than the unoperated fellow eyes. The better preservation of the ONL persisted but was less prominent by 20 weeks after surgery. Steroid treatment did not markedly reduce the better preservation of the ONL seen at 8, 10, and 12 weeks after surgery. The significant difference in cell count between operated and unoperated eyes in the L&V group at 8 weeks was due to the difference in the number of rods, not the cones.


Lensectomy and vitrectomy delay photoreceptor degeneration in rhodopsin P347L transgenic pigs. Lens-related rescue effect is a probable reason for the delayed degeneration.


Retinitis Pigmentosa Retinal Degeneration Outer Nuclear Layer Inner Nuclear Layer Rescue Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research supported by National Eye Institute RO1EY11498 and P30EY05722, Foundation Fighting Blindness and Research to Prevent Blindness.


  1. 1.
    Banin E, Cideciyan A, Li Z, et al (1998) Cone circuitry abnormalities in transgenic pigs with the P347L rhodopsin gene mutation. Neuron 23:549–557Google Scholar
  2. 2.
    Cao W, Wen R, Li F, et al (1997) Mechanical injury increases bFGF and CNTF mRNA expression in the mouse retina. Exp Eye Res 65(2):241-248CrossRefPubMedGoogle Scholar
  3. 3.
    Cao W, Li F, Steinberg RH, et al (2001) Development of normal and injury-induced gene expression of aFGF, bFGF, CNTF, BDNF, GFAP and IGF-I in the rat retina. Exp Eye Res 72(5):591–604CrossRefPubMedGoogle Scholar
  4. 4.
    Cellerino A, Kohler K (1997) Brain-derived neurotrophic factor/neurotrophin-4 receptor TrkB is localized on ganglion cells and dopaminergic amacrine cells in the vertebrate retina. J Comp Neurol 386(1):149–160Google Scholar
  5. 5.
    Coggeshall R, Lekan H (1996) Methods for determining numbers of cells and synapses: a case of more uniform standards of review. J Comp Neurol 364(1):6–15CrossRefPubMedGoogle Scholar
  6. 6.
    Ezzeddine Z, Yang X, DeChiara T, et al (1997) Postmitotic cells fated to become rod photoreceptors can be respecified by CNTF treatment of the retina. Development 124:1055–1067PubMedGoogle Scholar
  7. 7.
    Faktorovich E, Steinberg R, Yasumura D, et al (1990) Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature 347:83–86PubMedGoogle Scholar
  8. 8.
    Fischer D, Pavlidis M, Thanos S (2000) Cataractogenic lens injury prevents traumatic ganglion cell death and promotes axonal regeneration both in vivo and in culture. Invest Ophthalmol Vis Sci 41:3943–3954PubMedGoogle Scholar
  9. 9.
    Fubrmann S, Heller S, Rohrer H, Hofmann H (1998) A transient role of ciliary neurotrophic factor in chick photoreceptor development. J Neurobiol 37(4):672–683CrossRefPubMedGoogle Scholar
  10. 10.
    Fubrmann S, Kirsch M, Heller S, et al (1998) Differential regulation of ciliary neurotrophic factor receptor-alpha expression in all major neuronal cell classes during development of the chick retina. J Comp Neurol 400(2):244–254CrossRefPubMedGoogle Scholar
  11. 11.
    Humayun MS, Prince M, de Juan E Jr., et al (1999) Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 40(1):143–148PubMedGoogle Scholar
  12. 12.
    Jelsma TN, Aguayo AJ (1994) Trophic factors. Curr Opin Neurobiol 4(5):717–725PubMedGoogle Scholar
  13. 13.
    Jones BW, Chen CB, Watt JM et al (2002) Severe remodeling of the mouse neural retina triggered by rod degeneration. Annual Meeting Abstract and Program Planner [on CD-ROM] ARVO abstract #1885Google Scholar
  14. 14.
    Kelly M, Turner J, Reh T (1994) Retinoic acid promotes differentiation of photoreceptors in vitro. Development 120:2091–2102PubMedGoogle Scholar
  15. 15.
    Kirsch M, Lee M, Meyer V, et al (1997) Evidence for multiple, local functions of ciliary neurotrophic factor (CNTF) in retinal development: expression of CNTF and its receptors and in vitro effects on target cells. J Neurochem 68(3):979–990PubMedGoogle Scholar
  16. 16.
    Kociok N, Heppekausen H, Schraermeyer U, et al (1998) The mRNA expression of cytokines and their receptors in cultured iris pigment epithelial cells: a comparison with retinal pigment epithelial cells. Exp Eye Res 67(2):237–250CrossRefPubMedGoogle Scholar
  17. 17.
    Lai YL, Jonus AM (1977) Rat model for hereditary retinal degeneration. Adv Exp Med Biol 77:115–136PubMedGoogle Scholar
  18. 18.
    Landers M 3d, Stefansson E, Wolbarsht M (1982) Panretinal photocoagulation and retinal oxygenation. Retina 2(3):167–175PubMedGoogle Scholar
  19. 19.
    Leon S, Yin Y, Nguyen J, et al (2000) Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci 20(12):4615–4626PubMedGoogle Scholar
  20. 20.
    Li Z, Wong F, Chan J, et al (1998) Rhodopsin transgenic pigs as a model for human retinitis pigmentosa. Invest Ophthalmol Vis Sci 39(5):808–819PubMedGoogle Scholar
  21. 21.
    Machida S, Chaudry P, Shinobara T, et al (2001) Lens-epithelium-derived growth factor promotes photoreceptor survival in light-damaged and RCS rats. Invest Ophthalmol Vis Sci 42(5):1087–1095PubMedGoogle Scholar
  22. 22.
    Mansour-Robaey S, Clarke D, Wang Y, et al (1994) Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci 91:1632–1636PubMedGoogle Scholar
  23. 23.
    Peng Y, Hao Y, Petters R et al (2000) Ectopic synaptogenesis in the mammalian retina caused by rod photoreceptor-specific mutations. Nature Neurosci 3(11):1121–1127CrossRefPubMedGoogle Scholar
  24. 24.
    Petters R, Alexander C, Wells K, et al (1997) Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol 15(10):965–970PubMedGoogle Scholar
  25. 25.
    Rush R (1984) Immunohistochemical localization of endogenous nerve growth factor. Nature 312(5992):364–367PubMedGoogle Scholar
  26. 26.
    Santos A, Humayun M, de Juan E Jr., et al (1997) Preservation of the inner retina in retinitis pigmentosa: a morphometric analysis. Arch Ophthalmol 115(4):511–515PubMedGoogle Scholar
  27. 27.
    Schori H, Kipnis J, Yoles E, et al (2001) Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: Implications for glaucoma. Proc Natl Acad Sci 98(6):3398–3403CrossRefPubMedGoogle Scholar
  28. 28.
    Stefansson E, Landers M 3d, Wolbarsht M (1982) Vitrectomy, lensectomy, and oxygenation. Retina 2(3):159–166PubMedGoogle Scholar
  29. 29.
    Tatebayashi M, Oliveira LB, Mahmoud TH, Hao Y, Petters RM, Peng YW, McCuen BW, Wong W (2000) Clear lens extraction decreases the rate of photoreceptor loss in Rhodopsin P347L transgenic pigs. Invest Ophthalmol Vis Sci 41:S887Google Scholar
  30. 30.
    Tso M, Li W, Zhang C, et al (1997) A pathologic study of degeneration of the rod and cone populations of the rhodopsin Pro347Leu transgenic pigs. Trans Am Ophthalmol Soc 95:467–479PubMedGoogle Scholar
  31. 31.
    Wen R, Song Y, Cheng T, et al (1995) Injury-induced upregulation of bFGF and CNTF mRNAs in the rat retina. J Neurosci 15(11):7377–7385PubMedGoogle Scholar
  32. 32.
    Wong F, McCuen B, Hao Y, Petters R (1997) Panretinal laser photocoagulation failed to retard degeneration in rhodopsin P347L transgenic pigs. Invest Ophthalmol Vis Sci 38(4):S321Google Scholar
  33. 33.
    Yoshida A, Ishiguro S, Tamai M (1993) Expression of glial fibrillary acidic protein in rabbit müller cells after lensectomy–vitrectomy. Invest Ophthalmol Vis Sci 34:3154–3160PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Tamer H. Mahmoud
    • 1
  • Brooks W. McCuenII
    • 1
    Email author
  • Ying Hao
    • 1
  • Suk J. Moon
    • 1
  • Misako Tatebayashi
    • 1
  • Sandra Stinnett
    • 1
    • 2
  • Robert M. Petters
    • 3
  • Fulton Wong
    • 1
    • 4
  1. 1.Department of OphthalmologyDuke UniversityDurhamUSA
  2. 2.Department of Biostatistics and BioinformaticsDuke UniversityDurhamUSA
  3. 3.Department of Animal ScienceNorth Carolina State University RaleighUSA
  4. 4.Department of NeurobiologyDuke UniversityDurhamUSA

Personalised recommendations