Journal of Neurology

, Volume 245, Issue 3, pp 153–158 | Cite as

Functional correlates of callosal atrophy in relapsing-remitting multiple sclerosis patients. A preliminary MRI study

  • F. BarkhofEmail author
  • M. W. Tas
  • J. Valk
  • M. Elton
  • J. Lindeboom
  • W. F. Schmidt
  • O. R. Hommes
  • C. H. Polman
  • A. Kok
Original Communications


In multiple sclerosis (MS), periventricular lesions produce atrophy of the corpus callosum (CC), as evidenced by magnetic resonance imaging (MRI). We investigated whether CC atrophy in relapsing-remitting MS patients is related to functional deficits. We compared 14 mildly disabled (mean Expanded Disability Status Scale score 2.7) relapsing-remitting MS patients with 14 age- und sexmatched controls. CC size was determined using sagittal Tl-weighted MRI. The function of the CC was studied using a neuropsychological battery and neurophysiological evaluation based on visual stimulation using a divided visual field paradigm. The total area of the CC in patients (mean 5.3 cm2) was significantly (P=0.002) smaller than in controls (mean 6.6 cm2). Patients showed left ear extinction using the dichotic listening test and impaired name learning, which was correlated with atrophy of the splenium. There were no differences in interhemispheric transfer time between patients and controls. Marked atrophy of the CC can be encountered in relapsingremitting MS patients. The associated cerebral disconnection correlated with atrophy of expected regions of the CC, thus supporting topographical organization.

Key words

Multiple sclerosis Periventricular lesions Callosal atrophy MRI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598:143–153PubMedCrossRefGoogle Scholar
  2. 2.
    Barnard RO, Triggs M (1974) Corpus callosum in multiple sclerosis. J Neurol Neurosurg Psychiatry 37:1259–1264PubMedCrossRefGoogle Scholar
  3. 3.
    Bashore TD (1981) Vocal and manual reaction time estimates if interhemispheric transmission time. Psychol Bull 89:352–368PubMedCrossRefGoogle Scholar
  4. 4.
    Dietemann JL, Beigelmann C, Rumbach L, et al (1988) Multiple sclerosis and corpus callosum atrophy: relationship of MRI findings to clinical data. Neuroradiology 30:478–480PubMedCrossRefGoogle Scholar
  5. 5.
    Gean-Marton AD, Vezina LG, Marton KI, et al (1991) Abnormal corpus callosum: a sensitive and specific indicator of multiple sclerosis. Radiology 180:215–221PubMedGoogle Scholar
  6. 6.
    Habib M, Gayraud D, Regis J, Oliva A, Salamon G, Khalil R (1991) Effects of handedness and sex on the morphology of the corpus callosum. Brain Cogn 16:41–61PubMedCrossRefGoogle Scholar
  7. 7.
    Huber SJ, Paulson GW, Shuttleworth EC, et al (1987) Magnetic resonance correlates of dementia in multiple sclerosis. Arch Neurol 44:732–736PubMedGoogle Scholar
  8. 8.
    Jäncke L, Steinmetz H (1994) Interhemispheric transfer time and corpus callosum size. Neuroreport 5:2385–2388PubMedCrossRefGoogle Scholar
  9. 9.
    Kertesz A, Polk M, Howell J, Black SE (1987) Cerebral dominance, sex and callosal size in MRI. Neurology 37:1385–1388PubMedGoogle Scholar
  10. 10.
    Kurtzke FK (1983) Rating neurological impairment in multiple sclerosis: an expanded disability stuatus scale (EDSS). Neurology 33:1444–1452PubMedGoogle Scholar
  11. 11.
    Levy J, Trevarthen C, Sperry RW (1972) Perception of bilateral chimeric figures following hemispheric disconnection. Brain 95:61–78PubMedCrossRefGoogle Scholar
  12. 12.
    Lindeboom J, Horst R ter (1988) Interhemispheric disconnection effects in multiple sclerosis. J Neurol Neurosurg Psychiatry 51:1445–1447PubMedCrossRefGoogle Scholar
  13. 13.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRefGoogle Scholar
  14. 14.
    Pelletrier J, Habib M, Lyon-Caen O, Salamon G, Poncet M, Khalil R (1993) Functional and magnetic resonance imaging correlates of callosal involvement in multiple sclerosis. Arch Neurol 50:1077–1082Google Scholar
  15. 15.
    Poser CM, Paty DW, Scheinberg L, et al (1983) New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 13:227–231PubMedCrossRefGoogle Scholar
  16. 16.
    Pozzilli C, Fieschi C, Perani D, et al (1992) Relationship between corpus callosum atrophy and cerebral metabolic asymmetries in multiple sclerosis. J Neurol Sci 112:51–57PubMedCrossRefGoogle Scholar
  17. 17.
    Rao SM, Bernardin L, Leo GJ, et al (1989) Relationship to atrophy of the corpus callosum. Arch Neurol 46:918–920PubMedGoogle Scholar
  18. 18.
    Rauch RA, Jinkins JR (1996) Variability of corpus callosum area measurements from midsagittal MR images: effect of subject placement within the scanner. Am J Neuroradiol 17:27–28PubMedGoogle Scholar
  19. 19.
    Raven JC (1960) Guide to the standard progressive matrices. Lewis, LondonGoogle Scholar
  20. 20.
    Rugg MD, Lines CR, Milner AD (1985) Further investigations of visual evoked potentials elicited by lateralized stimuli: effects of stimulus eccentricity and reference site. Electroencephalogr Clin Neurophysiol 62:81–87PubMedCrossRefGoogle Scholar
  21. 21.
    Scheltens P, Barkhof F, Leys D, et al (1993) A semiquantitative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci 114:7–12PubMedCrossRefGoogle Scholar
  22. 22.
    Schnider A, Benson F, Rosner LJ (1993) Callosal disconnection in multiple sclerosis. Neurology 43:1243–1245PubMedGoogle Scholar
  23. 23.
    Simon JH, Holtas SL, Schiffer RB, et al (1986) Corpus callosum and subcallosal-periventricular lesions in multiple sclerosis: detection with MR. Radiology 160:363–367PubMedGoogle Scholar
  24. 24.
    Simon JH, Schiffer RB, Rudick RA, Herndon RM (1987) Quantitative determination of MS-induced corpus callosum atrophy in vivo using MR imaging. AJNR Am J Neuroradiol 8:599–604PubMedGoogle Scholar
  25. 25.
    Snijders JTH, Verhage F (1962) Groninger intelligentie test. Swets & Zeitlinger, AmsterdamGoogle Scholar
  26. 26.
    Weihe W, Loew M, Schulze-Siedschlag J, Horstmann A, Welter FL, Mariß G (1989) Multiple Sklerose: Balkenatrophie und Psychosyndrom. Nervenarzt 60:414–419PubMedGoogle Scholar
  27. 27.
    Weis S, Kimbacher M, Wenger E, Neuhold A (1993) Morphometric analysis of the corpus callosum using MR: correlation of measurements with aging in healthy individuals. AJNR Am J Neuroradiol 14:637–645PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • F. Barkhof
    • 1
    Email author
  • M. W. Tas
    • 1
  • J. Valk
    • 1
  • M. Elton
    • 2
  • J. Lindeboom
    • 3
  • W. F. Schmidt
    • 2
  • O. R. Hommes
    • 4
  • C. H. Polman
    • 5
  • A. Kok
    • 2
  1. 1.Department of Diagnostic RadiologyFree University HospitalMB AmsterdamThe Netherlands
  2. 2.Faculty of PsychologyUniversity of AmsterdamThe Netherlands
  3. 3.Department of Medical PsychologyFree University HospitalAmsterdamThe Netherlands
  4. 4.Institute of NeurologyUniversity Hospital NjmegenThe Netherlands
  5. 5.Department of NeurologyFree University HospitalAmsterdamThe Netherlands

Personalised recommendations