Skip to main content

Advertisement

Log in

Disease-modifying treatments for multiple sclerosis have not affected the incidence of neoplasms in clinical trials over 3 decades: a meta-analysis with meta-regression

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Objective

Our study aimed to estimate the incidence of neoplasms in clinical trials of DMTs for MS and to test the hypothesis that DMTs increase the risk of neoplasms in the duration of MS randomized controlled trials (RCTs).

Methods

Data were extracted from 42 RCTs of DMTs published between 1991 and 2020. The incidence rate (IR) of neoplasms was estimated by pooling the neoplasms in the active and placebo-treatment arm per patient-year. The neoplasm incidence rate ratio (IRR) of active over placebo-treatment arms was used as measure of the effect of DMTs on the risk of developing neoplasms.

Results

The meta-analysis included 10,638 placebo and 16,360 active-treatment arm patients. A non-significant pooled neoplasm incidence rate ratio (IRR: 1.0797; 95% CI: 0.8281 to 1.4077; P = 0.5711) with no heterogeneity (I2 = 0%) was observed in active over placebo-treatment groups from 1991 to 2020. We found a significant association between the incidence of neoplasms and the year of publication in both active and placebo arms of RCTs. Trials of sequestrating and depletive DMTs were associated with significantly higher incidence of neoplasms in both active and placebo-treated arms compared to immunomodulatory treatment trials.

Conclusions

Our study indicates that treatment with DMTs has not modified the risk of neoplasms in MS clinical trials from 1991 to 2020, which may reflect a low carcinogenic potential of DMTs and/or that the neoplasia latencies far exceed the typical MS trial observation periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tan TT, Coussens LM (2007) Humoral immunity, inflammation and cancer. Curr Opin Immunol 19(2):209–216. https://doi.org/10.1016/j.coi.2007.01.001

    Article  CAS  PubMed  Google Scholar 

  2. Rosalik K, Tarney C, Han J (2021) Human papilloma virus vaccination. Viruses 13(6):1091. https://doi.org/10.3390/v13061091.PMID:34201028;PMCID:PMC8228159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Finn OJ (2012) Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann Oncol Off J Eur Soc Med Oncol ESMO 23(8):viii–9. https://doi.org/10.1093/annonc/mds256PMID:22918931

    Article  Google Scholar 

  4. Grytten N, Myhr KM, Celius EG, Benjaminsen E, Kampman M, Midgard R, Vatne A, Aarseth JH, Riise T, Torkildsen Ø (2020) Risk of cancer among multiple sclerosis patients, siblings, and population controls: a prospective cohort study. Mult Scler 26(12):1569–1580. https://doi.org/10.1177/1352458519877244 (Epub 2019 Oct 1 PMID: 31573834)

    Article  PubMed  Google Scholar 

  5. Kingwell E et al (2012) Cancer risk in multiple sclerosis: findings from British Columbia, Canada. Brain 2012:2973–2979. https://doi.org/10.1093/brain/aws148

    Article  Google Scholar 

  6. Achiron A, Barak Y, Gail M et al (2005) Cancer incidence in multiple sclerosis and effects of immunomodulatory treatments. Breast Cancer Res Treat 89:265–270

    Article  CAS  Google Scholar 

  7. Lebrun C, Vermersch P, Brassat D, Defer G, Rumbach L, Clavelou P et al (2011) Cancer and multiple sclerosis in the era of disease-modifying treatments. J Neurol 258:1304–1311. https://doi.org/10.1007/s00415-011-5929-9 (PMID: 21293872)

    Article  PubMed  Google Scholar 

  8. Nielsen NM, Rostgaard K, Rasmussen S et al (2006) Cancer risk among patients with multiple sclerosis: a population-based register study. Int J Cancer 118:979–984

    Article  CAS  Google Scholar 

  9. Marrie RA, Maxwell C, Mahar A, Ekuma O, McClintock C, Seitz D, Webber C, Groome PA (2021) Cancer incidence and mortality rates in multiple sclerosis. A matched cohort study. Neurology 96:e501–e512. https://doi.org/10.1212/WNL.0000000000011219

    Article  CAS  PubMed  Google Scholar 

  10. Sumelahti ML, Pukkala E, Hakama M (2004) Cancer incidence in multiple sclerosis: a 35-year follow-up. Neuroepidemiology 23(5):224–227. https://doi.org/10.1159/000079947 (PMID: 15316248)

    Article  PubMed  Google Scholar 

  11. Marrie RA, Reider N, Cohen J, Stuve O, Trojano M, Sorensen PS, Reingold SC, Cutter G (2015) A systematic review of the incidence and prevalence of cancer in multiple sclerosis. Mult Scler 21:294–304. https://doi.org/10.1177/1352458514564489 (PMID: 25533302)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bahmanyar S, Montgomery SM, Hillert J, Ekbom A, Olsson T (2009) Cancer risk among patients with multiple sclerosis and their parents. Neurology 72:1170–1177. https://doi.org/10.1212/01.wnl.0000345366.10455.62 (PMID: 19332695)

    Article  CAS  PubMed  Google Scholar 

  13. Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Sørensen PS et al (2010) A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med 362:416–426. https://doi.org/10.1056/NEJMoa0902533

    Article  CAS  PubMed  Google Scholar 

  14. Pakpoor J, Disanto G, Altmann DR et al (2015) No evidence for higher risk of cancer in patients with multiple sclerosis taking cladribine. Neurol Neuroimmunol Neuroinflam 2:e158. https://doi.org/10.1212/NXI.0000000000000158

    Article  Google Scholar 

  15. Gklinos P, Papadopoulou M, Stanulovic V, Mitsikostas DD, Papadopoulos D (2021) Monoclonal antibodies as neurological therapeutics. Pharmaceuticals (Basel) 14(2):92. https://doi.org/10.3390/ph14020092.PMID:33530460;PMCID:PMC7912592

    Article  CAS  Google Scholar 

  16. Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G et al (2017) Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med 376:209–220. https://doi.org/10.1056/NEJMoa1606468

    Article  CAS  PubMed  Google Scholar 

  17. Zorzela L, Loke YK, Ioannidis JP, Golder S, Santaguida P, Altman DG, Moher D, Vohra S; PRISMAHarms Group (2016) PRISMA harms checklist: improving harms reporting in systematic reviews. BMJ 352:i157. https://doi.org/10.1136/bmj.i157 (Erratum in: BMJ. 2016;353:2229)

    Article  Google Scholar 

  18. Prosperini L, Haggiag S, Tortorella C, Galgani S, Gasperini C (2020) Age-related adverse events of disease-modifying treatments for multiple sclerosis: a meta-regression. Mult Scler. https://doi.org/10.1177/1352458520964778

    Article  PubMed  Google Scholar 

  19. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng H-Y, Corbett MS, Eldridge SM, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898

    Article  Google Scholar 

  20. Santaguida PL, Raina P, Ismaila A (2008) The development of the McHarm quality assessment scale for adverse events. McMaster University, Hamilton, Ontario

    Google Scholar 

  21. Cox DR (1970) The continuity correction. Biometrika 57:217–219

    Article  Google Scholar 

  22. Lane PW (2013) Meta-analysis of incidence of rare events. Stat Methods Med Res 22(2):117–132. https://doi.org/10.1177/0962280211432218 (Epub 2012 Jan 4 PMID: 22218366)

    Article  PubMed  Google Scholar 

  23. Spittal MJ, Pirkis J, Gurrin LC (2015) Meta-analysis of incidence rate data in the presence of zero events. BMC Med Res Methodol 15:42. https://doi.org/10.1186/s12874-015-0031-0.PMID:25925169;PMCID:PMC4422043

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moreno SG, Sutton AJ, Turner EH, Abrams KR, Cooper NJ, Palmer TM, Ades AE (2009) Novel methods to deal with publication biases: secondary analysis of antidepressant trials in the FDA trial registry database and related journal publications. BMJ 339:b2981. https://doi.org/10.1136/bmj.b2981.PMID:19666685;PMCID:PMC2723217

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nørgaard M, Veres K, Didden EM, Wormser D, Magyari M (2019) Multiple sclerosis and cancer incidence: a Danish nationwide cohort study. Mult Scler Relat Disord 28:81–85. https://doi.org/10.1016/j.msard.2018.12.014

    Article  PubMed  Google Scholar 

  26. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics (2020) GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  27. Zecca C, Disanto G, Sacco R, MacLachlan S, Kuhle J, Ramagopalan SV, Gobbi C (2021) Increasing cancer risk over calendar year in people with multiple sclerosis: a case-control study. J Neurol 268(3):817–824. https://doi.org/10.1007/s00415-020-10170-5 (Epub 2020 Oct 21 PMID: 33084939)

    Article  PubMed  Google Scholar 

  28. Witherspoon RP, Deeg HJ, Storb R (1994) Secondary malignancies after marrow transplantation for leukemia or aplastic anemia. Transplant Sci 4(1):33–41

    CAS  PubMed  Google Scholar 

  29. Felice MS, Rossi JG, Alonso CN, Rubio P, Gallego MS, Galluzzo ML, Lubieniecki F, Gutiérrez G, Guitter MR, Alderete DH, Rose AB, Cacciavillano WD, Herzovich V, Alfaro EM, Sánchez La Rosa CG, Millán N, Chantada GL, Figueroa Turienzo CM, Zubizarreta PA (2017) Second neoplasms in children following a treatment for acute leukemia and/or lymphoma: 29 years of experience in a single institution in argentina. J Pediatr Hematol Oncol 39(8):e406–e412 (PMID: 28945661)

    Article  Google Scholar 

  30. Alping P, Askling J, Burman J, Fink K, Fogdell-Hahn A, Gunnarsson M, Hillert J, Langer-Gould A, Lycke J, Nilsson P, Salzer J, Svenningsson A, Vrethem M, Olsson T, Piehl F, Frisell T (2020) Cancer risk for fingolimod, natalizumab, and rituximab in multiple sclerosis patients. Ann Neurol 87(5):688–699. https://doi.org/10.1002/ana.25701 (Epub 2020 Mar 9 PMID: 32056253)

    Article  CAS  PubMed  Google Scholar 

  31. National Cancer Institute, National Institutes of Health: “About Cancer: Age and Cancer Risk”. https://www.cancer.gov/about-cancer/causes-prevention/risk/age. (Accessed on 4 May2021).

  32. Asomaning K, Miller DP, Liu G et al (2008) Second hand smoke, age of exposure and lung cancer risk. Lung Cancer 61(1):13–20. https://doi.org/10.1016/j.lungcan.2007.11.013

    Article  PubMed  Google Scholar 

  33. National Academy of Sciences (NAS), National Research Council. Committee on the Biological Effects of Ionizing Radiation (BEIR V) (1990) Health effect of exposures to low levels of ionizing radiation. National Academy Press, Washington, DC

    Google Scholar 

  34. Little MP (2009) Heterogeneity of variation of relative risk by age at exposure in the Japanese atomic bomb survivors. Radiat Environ Biophys 48(3):253–262

    Article  Google Scholar 

  35. La Mantia L, Benedetti MD, Sant M, d’Arma A, Di Tella S, Lillini R, Mendozzi L, Marangi A, Turatti M, Caputo D, Rovaris M (2021) Cancer risk for multiple sclerosis patients treated with azathioprine and disease-modifying therapies: an Italian observational study. Neurol Sci. https://doi.org/10.1007/s10072-021-05216-z

    Article  PubMed  Google Scholar 

Download references

Funding

No funding source had any role in design, conduct of study, collation, analysis, interpretation of data or in the preparation, review, approval, or decision to submit the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: DP. Acquisition, analysis or interpretation of data: PG, KD, DP. Drafting of the manuscript: PG, DP. RN. Critical revision of manuscript for important intellectual content: DM, TF, RN. Statistical analysis: GP, ED, TF. Administrative technical or material support: PG, KD Supervision: DP, DM, RN.

Corresponding author

Correspondence to Dimitrios Papadopoulos.

Ethics declarations

Conflicts of interest

Dr. D Papadopoulos has received consulting, speaking fees, and travel grants from Bayer, Genesis Pharma, Merck, Mylan, Novartis, Roche, Sanofi-Aventis, Specifar, and Teva. Dr. P Gklinos has nothing to disclose. Dr. K Drellia has nothing to disclose. Mr. G Psarros has nothing to disclose. Dr. E Delicha has nothing to disclose. Prof. DD Mitsikostas has received consulting, speaking fees, and travel grants from Allergan, Amgen, Bayer, Biogen, Cefaly, Genesis Pharma, GlaxoSmithKline, ElectroCore, Eli Lilly, Merck-Serono, Merz, Mylan, Novartis, Roche, Sanofi-Genzyme, Specifar, and Teva. Prof R Nicholas has received consulting and speaking fees from Novartis, Roche, and Biogen.

Ethical standards

No ethics approval or patient consent was obtained because all data used in this study were collected from previously published peer-reviewed articles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papadopoulos, D., Gklinos, P., Psarros, G. et al. Disease-modifying treatments for multiple sclerosis have not affected the incidence of neoplasms in clinical trials over 3 decades: a meta-analysis with meta-regression. J Neurol 269, 3226–3237 (2022). https://doi.org/10.1007/s00415-021-10932-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10932-9

Keywords

Navigation