Skip to main content

Advertisement

Log in

Mesenchymal stem cell therapy for ischemic stroke: A look into treatment mechanism and therapeutic potential

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Stroke, a global disease with a high disability rate, has limited options for functional rehabilitation and results in an adverse impact on patients’ lives. In recent years, mesenchymal stem cells (MSCs) have become a new focus of treatment owing to their potential for neuroregeneration. MSCs have demonstrated therapeutic efficacy capable of cell migration, angiogenesis, immunomodulation, neuroprotection and neural circuit reconstruction. The paracrine action of MSCs can also exert neurotrophic effects and improve the functional recovery. This review shows the transplantation protocol for MSCs, discusses the potential therapeutic mechanisms, and summarizes clinical trials on MSCs for treating ischemic stroke. The current proofs show that MSC therapy for ischemic stroke is safe and feasible. The timing and optimal dose of MSC administration are the main challenges in its clinical use. Although still under research, MSC therapy has the potential to be a new therapeutic approach for neurological recovery from ischemic stroke in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang H, Lu M, Zhang X, Kuai Y, Mei Y, Tan Q, Zhong K, Sun X, Tan W (2019) Isosteviol sodium protects against ischemic stroke by modulating microglia/macrophage polarization via disruption of GAS5/miR-146a-5p sponge. Sci Rep 9(1):12221. https://doi.org/10.1038/s41598-019-48759-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee WT, Tai SH, Lin YW, Wu TS, Lee EJ (2018) YC-1 reduces inflammatory responses by inhibiting nuclear factor-κB translocation in mice subjected to transient focal cerebral ischemia. Mole Med Rep 18(2):2043–2051. https://doi.org/10.3892/mmr.2018.9178

    Article  CAS  Google Scholar 

  3. Chen B, Tao J, Lin Y, Lin R, Liu W, Chen L (2015) Electro-acupuncture exerts beneficial effects against cerebral ischemia and promotes the proliferation of neural progenitor cells in the cortical peri-infarct area through the Wnt/β-catenin signaling pathway. Int J Mol Med 36(5):1215–1222. https://doi.org/10.3892/ijmm.2015.2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sung PH, Chen KH, Lin HS, Chu CH, Chiang JY, Yip HK (2019) The correlation between severity of neurological impairment and left ventricular function in patients after acute ischemic stroke. J Clin Med 8:2. https://doi.org/10.3390/jcm8020190

    Article  CAS  Google Scholar 

  5. Sahota P, Savitz SI (2011) Investigational therapies for ischemic stroke: neuroprotection and neurorecovery. J Am Soc Exper Neuro Thera 8(3):434–451. https://doi.org/10.1007/s13311-011-0040-6

    Article  CAS  Google Scholar 

  6. Lin BL, Zhang JZ, Lu LJ, Mao JJ, Cao MH, Mao XH, Zhang F, Duan XH, Zheng CS, Zhang LM, Shen J (2017) Superparamagnetic iron oxide nanoparticles-complexed cationic amylose for in vivo magnetic resonance imaging tracking of transplanted stem cells in stroke. Nanomaterials (Basel, Switzerland) 7:5. https://doi.org/10.3390/nano7050107

    Article  CAS  Google Scholar 

  7. Zhang F, Duan X, Lu L, Zhang X, Zhong X, Mao J, Chen M, Shen J (2016) In Vivo targeted MR imaging of endogenous neural stem cells in ischemic stroke. Molecules (Basel, Switzerland) 21:9. https://doi.org/10.3390/molecules21091143

    Article  Google Scholar 

  8. da Silva ML, Malta TM, de Deus Wagatsuma VM, Palma PV, Araújo AG, Ribeiro Malmegrim KC, Morato de Oliveira F, Panepucci RA, Silva WA, Kashima Haddad S, Covas DT (2015) Cultured human adipose tissue pericytes and mesenchymal stromal cells display a very similar gene expression profile. Stem Cells Dev 24(23):2822–2840. https://doi.org/10.1089/scd.2015.0153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zou Z, Zhang Y, Hao L, Wang F, Liu D, Su Y, Sun H (2010) More insight into mesenchymal stem cells and their effects inside the body. Exp Opinion Biol Ther 10(2):215–230. https://doi.org/10.1517/14712590903456011

    Article  CAS  Google Scholar 

  10. Honmou O, Onodera R, Sasaki M, Waxman SG, Kocsis JD (2012) Mesenchymal stem cells: therapeutic outlook for stroke. Trends Mole Med 18(5):292–297. https://doi.org/10.1016/j.molmed.2012.02.003

    Article  CAS  Google Scholar 

  11. Sanberg PR, Eve DJ, Metcalf C, Borlongan CV (2012) Advantages and challenges of alternative sources of adult-derived stem cells for brain repair in stroke. Prog Brain Res 201:99–117. https://doi.org/10.1016/b978-0-444-59544-7.00006-8

    Article  PubMed  Google Scholar 

  12. Wan Safwani WKZ, Choi JR, Yong KW, Ting I, Mat Adenan NA, Pingguan-Murphy B (2017) Hypoxia enhances the viability, growth and chondrogenic potential of cryopreserved human adipose-derived stem cells. Cryobiology 75:91–99. https://doi.org/10.1016/j.cryobiol.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  13. Choi JR, Yong KW, Choi JY (2018) Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering. J Cell Physiol 233(3):1913–1928. https://doi.org/10.1002/jcp.26018

    Article  CAS  PubMed  Google Scholar 

  14. Cai F, Hong X, Tang X, Liu NC, Wang F, Zhu L, Xie XH, Xie ZY, Wu XT (2019) ASIC1a activation induces calcium-dependent apoptosis of BMSCs under conditions that mimic the acidic microenvironment of the degenerated intervertebral disc. Biosci Rep 39:11. https://doi.org/10.1042/bsr20192708

    Article  CAS  Google Scholar 

  15. Yong KW, Choi JR, Mohammadi M, Mitha AP, Sanati-Nezhad A, Sen A (2018) Mesenchymal stem cell therapy for ischemic tissues. Stem Cells internat 2:8179075. https://doi.org/10.1155/2018/8179075

    Article  CAS  Google Scholar 

  16. Ryu B, Sekine H, Homma J, Kobayashi T, Kobayashi E, Kawamata T, Shimizu T (2019) Allogeneic adipose-derived mesenchymal stem cell sheet that produces neurological improvement with angiogenesis and neurogenesis in a rat stroke model. J Neurosurg 132(2):442–455. https://doi.org/10.3171/2018.11.jns182331

    Article  CAS  PubMed  Google Scholar 

  17. Chen KH, Lin KC, Wallace CG, Li YC, Shao PL, Chiang JY, Sung PH, Yip HK (2019) Human induced pluripotent stem cell-derived mesenchymal stem cell therapy effectively reduced brain infarct volume and preserved neurological function in rat after acute intracranial hemorrhage. Am J Trans Res 11(9):6232–6248

    CAS  Google Scholar 

  18. Chrostek MR, Fellows EG, Crane AT, Grande AW, Low WC (2019) Efficacy of stem cell-based therapies for stroke. Brain Res 1722:146362. https://doi.org/10.1016/j.brainres.2019.146362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dabrowska S, Andrzejewska A, Strzemecki D, Muraca M, Janowski M, Lukomska B (2019) Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. J Neuroinflam 16(1):216. https://doi.org/10.1186/s12974-019-1602-5

    Article  CAS  Google Scholar 

  20. Cunningham CJ, Wong R, Barrington J, Tamburrano S, Pinteaux E, Allan SM (2020) Systemic conditioned medium treatment from interleukin-1 primed mesenchymal stem cells promotes recovery after stroke. Stem cell Res Ther 11(1):32. https://doi.org/10.1186/s13287-020-1560-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pirzad Jahromi G, Shabanzadeh Pirsaraei A, Sadr SS, Kaka G, Jafari M, Seidi S, Charish J (2015) Multipotent bone marrow stromal cell therapy promotes endogenous cell proliferation following ischemic stroke. Clin Exp Pharmacol Physiol 42(11):1158–1167. https://doi.org/10.1111/1440-1681.12466

    Article  CAS  PubMed  Google Scholar 

  22. Lalu MM, Montroy J, Dowlatshahi D, Hutton B, Juneau P, Wesch N, Zhang Y (2020) From the lab to patients: a systematic review and meta-analysis of mesenchymal stem cell therapy for stroke. Trans Stroke Res 11(3):345–364. https://doi.org/10.1007/s12975-019-00736-5

    Article  CAS  Google Scholar 

  23. Tao H, Chen X, Wei A, Song X, Wang W, Liang L, Zhao Q, Han Z, Han Z, Wang X, Li Z (2018) Comparison of teratoma formation between embryonic stem cells and parthenogenetic embryonic stem cells by molecular imaging. Stem Cells Internat 18:7906531. https://doi.org/10.1155/2018/7906531

    Article  CAS  Google Scholar 

  24. Deng J, Zhang Y, Xie Y, Zhang L, Tang P (2018) Cell Transplantation for spinal cord injury: tumorigenicity of induced pluripotent stem cell-derived neural stem/progenitor cells. Stem Cells Internat 1:5653787. https://doi.org/10.1155/2018/5653787

    Article  CAS  Google Scholar 

  25. Yang X, Wang R, Wang X, Cai G, Qian Y, Feng S, Tan F, Chen K, Tang K, Huang X, Jing N, Qiao Y (2018) TGFβ signaling hyperactivation-induced tumorigenicity during the derivation of neural progenitors from mouse ESCs. J Mole Cell Biol 10(3):216–228. https://doi.org/10.1093/jmcb/mjy013

    Article  CAS  Google Scholar 

  26. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A (2005) Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy 7(5):393–395. https://doi.org/10.1080/14653240500319234

    Article  CAS  PubMed  Google Scholar 

  27. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Dj P, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8(4):315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  28. Luo L, Hu DH, Yin JQ, Xu RX (2018) Molecular mechanisms of transdifferentiation of adipose-derived stem cells into neural cells: current status and perspectives. Stem Cells Internat 8:5630802. https://doi.org/10.1155/2018/5630802

    Article  CAS  Google Scholar 

  29. Lv FJ, Tuan RS, Cheung KM, Leung VY (2014) Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells (Dayton, Ohio) 32(6):1408–1419. https://doi.org/10.1002/stem.1681

    Article  CAS  Google Scholar 

  30. Camilleri ET, Gustafson MP, Dudakovic A, Riester SM, Garces CG, Paradise CR, Takai H, Karperien M, Cool S, Sampen HJ, Larson AN, Qu W, Smith J, Dietz AB, van Wijnen AJ (2016) Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Res Ther 7(1):107. https://doi.org/10.1186/s13287-016-0370-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pachón-Peña G, Donnelly C, Ruiz-Cañada C, Katz A, Fernández-Veledo S, Vendrell J, Sackstein R (2017) A Glycovariant of Human CD44 is characteristically expressed on human mesenchymal stem cells. Stem Cells (Dayton, Ohio) 35(4):1080–1092. https://doi.org/10.1002/stem.2549

    Article  CAS  Google Scholar 

  32. Liu GB, Pan YM, Liu YS, Hu JH, Zhang XD, Zhang DW, Wang Y, Feng YK, Yu JB, Cheng YX (2020) Ghrelin promotes neural differentiation of adipose tissue-derived mesenchymal stem cell via AKT/mTOR and β-catenin signaling pathways. Kaohsi J Med Sci. https://doi.org/10.1002/kjm2.12188

    Article  Google Scholar 

  33. Ji W, Álvarez Z, Edelbrock AN, Sato K, Stupp SI (2018) Bioactive Nanofibers induce neural transdifferentiation of human bone marrow mesenchymal stem cells. ACS Appl Mater int 10(48):41046–41055. https://doi.org/10.1021/acsami.8b13653

    Article  CAS  Google Scholar 

  34. Zainal Abidin S, Fam SZ, Chong CE, Abdullah S, Cheah PS, Nordin N, Ling KH (2019) miR-3099 promotes neurogenesis and inhibits astrogliogenesis during murine neural development. Gene 697:201–212. https://doi.org/10.1016/j.gene.2019.02.014

    Article  CAS  PubMed  Google Scholar 

  35. Lam PK, Wang KKW, Chin DWC, Tong CSW, Wang Y, Lo KKY, Lai PBS, Ma H, Zheng VZY, Poon WS, Wong GKC (2020) Topically applied adipose-derived mesenchymal stem cell treatment in experimental focal cerebral ischemia. J Clin Neurosci Soc Aust 71:226–233. https://doi.org/10.1016/j.jocn.2019.08.051

    Article  CAS  Google Scholar 

  36. Hazeri Y, Irani S, Zandi M, Pezeshki-Modaress M (2020) Polyvinyl alcohol/sulfated alginate nanofibers induced the neuronal differentiation of human bone marrow stem cells. Int J Biol Macromol 147:946–953. https://doi.org/10.1016/j.ijbiomac.2019.10.061

    Article  CAS  PubMed  Google Scholar 

  37. Jedari B, Rahmani A, Naderi M, Nadri S (2020) MicroRNA-7 promotes neural differentiation of trabecular meshwork mesenchymal stem cell on nanofibrous scaffold. J Cell Biochem 121(4):2818–2827. https://doi.org/10.1002/jcb.29513

    Article  CAS  PubMed  Google Scholar 

  38. Kwon HM, Hur SM, Park KY, Kim CK, Kim YM, Kim HS, Shin HC, Won MH, Ha KS, Kwon YG, Lee DH, Kim YM (2014) Multiple paracrine factors secreted by mesenchymal stem cells contribute to angiogenesis. Vasc Pharmacol 63(1):19–28. https://doi.org/10.1016/j.vph.2014.06.004

    Article  CAS  Google Scholar 

  39. He B, Yao Q, Liang Z, Lin J, Xie Y, Li S, Wu G, Yang Z, Xu P (2016) The dose of intravenously transplanted bone marrow stromal cells determines the therapeutic effect on vascular remodeling in a rat model of ischemic stroke. Cell Transplant 25(12):2173–2185. https://doi.org/10.3727/096368916x692627

    Article  PubMed  Google Scholar 

  40. Hofer HR, Tuan RS (2016) Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther 7(1):131. https://doi.org/10.1186/s13287-016-0394-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khan S, Villalobos MA, Choron RL, Chang S, Brown SA, Carpenter JP, Tulenko TN, Zhang P (2017) Fibroblast growth factor and vascular endothelial growth factor play a critical role in endotheliogenesis from human adipose-derived stem cells. J Vasc Surg 65(5):1483–1492. https://doi.org/10.1016/j.jvs.2016.04.034

    Article  PubMed  Google Scholar 

  42. Li X, Huang M, Zhao R, Zhao C, Liu Y, Zou H, Chen L, Guan Y, Zhang YA (2018) Intravenously delivered allogeneic mesenchymal stem cells bidirectionally regulate inflammation and induce neurotrophic effects in distal middle cerebral artery occlusion rats within the first 7 days after stroke. Cell Physiol Biochem Internat J Exp Cell Physiol Biochem Pharmacol 46(5):1951–1970. https://doi.org/10.1159/000489384

    Article  CAS  Google Scholar 

  43. Toyoshima A, Yasuhara T, Date I (2017) Mesenchymal stem cell therapy for ischemic stroke. Acta Med Okayama 71(4):263–268. https://doi.org/10.18926/amo/55302

    Article  CAS  PubMed  Google Scholar 

  44. Jin K, Sun Y, Xie L, Mao XO, Childs J, Peel A, Logvinova A, Banwait S, Greenberg DA (2005) Comparison of ischemia-directed migration of neural precursor cells after intrastriatal, intraventricular, or intravenous transplantation in the rat. Neurobiol Dis 18(2):366–374. https://doi.org/10.1016/j.nbd.2004.10.010

    Article  CAS  PubMed  Google Scholar 

  45. Wang L, Lin Z, Shao B, Zhuge Q, Jin K (2013) Therapeutic applications of bone marrow-derived stem cells in ischemic stroke. Neurol Res 35(5):470–478. https://doi.org/10.1179/1743132813y.0000000210

    Article  CAS  PubMed  Google Scholar 

  46. Ahmadian Kia N, Bahrami AR, Ebrahimi M, Matin MM, Neshati Z, Almohaddesin MR, Aghdami N, Bidkhori HR (2011) Comparative analysis of chemokine receptor's expression in mesenchymal stem cells derived from human bone marrow and adipose tissue. J Mole Neurosci MN 44(3):178–185. https://doi.org/10.1007/s12031-010-9446-6

    Article  CAS  Google Scholar 

  47. Mello TG, Rosado-de-Castro PH, Campos RMP, Vasques JF, Rangel-Junior WS, Mattos RSAR, Puig-Pijuan T, Foerster BU, Gutfilen B, Souza SAL, Boltze J, Paiva FF, Mendez-Otero R, Pimentel-Coelho PM (2020) Intravenous human umbilical cord-derived mesenchymal stromal cell administration in models of moderate and severe intracerebral hemorrhage. Stem Cells Dev 29(9):586–598. https://doi.org/10.1089/scd.2019.0176

    Article  CAS  PubMed  Google Scholar 

  48. Du S, Guan J, Mao G, Liu Y, Ma S, Bao X, Gao J, Feng M, Li G, Ma W, Yang Y, Zhao RC, Wang R (2014) Intra-arterial delivery of human bone marrow mesenchymal stem cells is a safe and effective way to treat cerebral ischemia in rats. Cell Transplant 1:S73–82. https://doi.org/10.3727/096368914x685023

    Article  Google Scholar 

  49. Fukuda Y, Horie N, Satoh K, Yamaguchi S, Morofuji Y, Hiu T, Izumo T, Hayashi K, Nishida N, Nagata I (2015) Intra-arterial transplantation of low-dose stem cells provides functional recovery without adverse effects after stroke. Cell Mol Neurobiol 35(3):399–406. https://doi.org/10.1007/s10571-014-0135-9

    Article  CAS  PubMed  Google Scholar 

  50. Chau MJ, Deveau TC, Gu X, Kim YS, Xu Y, Yu SP, Wei L (2018) Delayed and repeated intranasal delivery of bone marrow stromal cells increases regeneration and functional recovery after ischemic stroke in mice. BMC Neurosci 19(1):20. https://doi.org/10.1186/s12868-018-0418-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Matsushita T, Kibayashi T, Katayama T, Yamashita Y, Suzuki S, Kawamata J, Honmou O, Minami M, Shimohama S (2011) Mesenchymal stem cells transmigrate across brain microvascular endothelial cell monolayers through transiently formed inter-endothelial gaps. Neurosci Lett 502(1):41–45. https://doi.org/10.1016/j.neulet.2011.07.021

    Article  CAS  PubMed  Google Scholar 

  52. Li YH, Feng L, Zhang GX, Ma CG (2015) Intranasal delivery of stem cells as therapy for central nervous system disease. Exp Mol Pathol 98(2):145–151. https://doi.org/10.1016/j.yexmp.2015.01.016

    Article  CAS  PubMed  Google Scholar 

  53. Rodríguez-Frutos B, Otero-Ortega L, Gutiérrez-Fernández M, Fuentes B, Ramos-Cejudo J, Díez-Tejedor E (2016) Stem cell therapy and administration routes after stroke. Trans Stroke Res 7(5):378–387. https://doi.org/10.1007/s12975-016-0482-6

    Article  CAS  Google Scholar 

  54. Shi Y, Shi H, Nomi A, Lei-Lei Z, Zhang B, Qian H (2019) Mesenchymal stem cell-derived extracellular vesicles: a new impetus of promoting angiogenesis in tissue regeneration. Cytotherapy 21(5):497–508. https://doi.org/10.1016/j.jcyt.2018.11.012

    Article  CAS  PubMed  Google Scholar 

  55. Bang OY, Kim EH (2019) Mesenchymal stem cell-derived extracellular vesicle therapy for stroke: challenges and progress. Front Neurol 10:211. https://doi.org/10.3389/fneur.2019.00211

    Article  PubMed  PubMed Central  Google Scholar 

  56. Otero-Ortega L, Laso-García F, Frutos MCG, Diekhorst L, Martínez-Arroyo A, Alonso-López E, García-Bermejo ML, Rodríguez-Serrano M, Arrúe-Gonzalo M, Díez-Tejedor E, Fuentes B, Gutiérrez-Fernández M (2020) Low dose of extracellular vesicles identified that promote recovery after ischemic stroke. Stem Cell Res Ther 11(1):70. https://doi.org/10.1186/s13287-020-01601-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bhasin A, Srivastava MV, Mohanty S, Bhatia R, Kumaran SS, Bose S (2013) Stem cell therapy: a clinical trial of stroke. Clin Neurol Neurosurg 115(7):1003–1008. https://doi.org/10.1016/j.clineuro.2012.10.015

    Article  PubMed  Google Scholar 

  58. Li G, Yu F, Lei T, Gao H, Li P, Sun Y, Huang H, Mu Q (2016) Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies. Neural Regen Res 11(6):1015–1024. https://doi.org/10.4103/1673-5374.184506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Muir KW (2017) Clinical trial design for stem cell therapies in stroke: what have we learned? Neurochem Int 106:108–113. https://doi.org/10.1016/j.neuint.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  60. Kim SJ, Moon GJ, Chang WH, Kim YH, Bang OY (2013) Intravenous transplantation of mesenchymal stem cells preconditioned with early phase stroke serum: current evidence and study protocol for a randomized trial. Trials 14:317. https://doi.org/10.1186/1745-6215-14-317

    Article  PubMed  PubMed Central  Google Scholar 

  61. Oshita J, Okazaki T, Mitsuhara T, Imura T, Nakagawa K, Otsuka T, Kurose T, Tamura T, Abiko M, Takeda M, Kawahara Y, Yuge L, Kurisu K (2020) Early transplantation of human cranial bone-derived mesenchymal stem cells enhances functional recovery in ischemic stroke model rats. Neurol Med Chir 60(2):83–93. https://doi.org/10.2176/nmc.oa.2019-0186

    Article  Google Scholar 

  62. Azad TD, Veeravagu A, Steinberg GK (2016) Neurorestoration after stroke. Neurosurg Focus 40(5):E2. https://doi.org/10.3171/2016.2.focus15637

    Article  PubMed  PubMed Central  Google Scholar 

  63. Park J, Lee N, Lee J, Choe EK, Kim MK, Lee J, Byun MS, Chon MW, Kim SW, Lee CJ, Kim JH, Kwon JS, Chang MS (2017) Small molecule-based lineage switch of human adipose-derived stem cells into neural stem cells and functional GABAergic neurons. Sci Rep 7(1):10166. https://doi.org/10.1038/s41598-017-10394-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ, Olson L (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA 99(4):2199–2204. https://doi.org/10.1073/pnas.042678299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hsuan YC, Lin CH, Chang CP, Lin MT (2016) Mesenchymal stem cell-based treatments for stroke, neural trauma, and heat stroke. Brain Behav 6(10):e00526. https://doi.org/10.1002/brb3.526

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gunawardena TNA, Rahman MT, Abdullah BJJ, Abu Kasim NH (2019) Conditioned media derived from mesenchymal stem cell cultures: the next generation for regenerative medicine. J Iss Eng Regen Med 13(4):569–586. https://doi.org/10.1002/term.2806

    Article  CAS  Google Scholar 

  67. Cunningham CJ, Redondo-Castro E, Allan SM (2018) The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. J blood Flow Metab Internat Soc Cerebral Blood Flow Metab 38(8):1276–1292. https://doi.org/10.1177/0271678x18776802

    Article  Google Scholar 

  68. Feng Y, Yu HM, Shang DS, Fang WG, He ZY, Chen YH (2014) The involvement of CXCL11 in bone marrow-derived mesenchymal stem cell migration through human brain microvascular endothelial cells. Neurochem Res 39(4):700–706. https://doi.org/10.1007/s11064-014-1257-7

    Article  CAS  PubMed  Google Scholar 

  69. Geranmayeh MH, Nourazarian A, Avci ÇB, Rahbarghazi R, Farhoudi M (2017) Stem cells as a promising tool for the restoration of brain neurovascular unit and angiogenic orientation. Mol Neurobiol 54(10):7689–7705. https://doi.org/10.1007/s12035-016-0286-4

    Article  CAS  PubMed  Google Scholar 

  70. Steingen C, Brenig F, Baumgartner L, Schmidt J, Schmidt A, Bloch W (2008) Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells. J Mol Cell Cardiol 44(6):1072–1084. https://doi.org/10.1016/j.yjmcc.2008.03.010

    Article  CAS  PubMed  Google Scholar 

  71. Heiskanen A, Hirvonen T, Salo H, Impola U, Olonen A, Laitinen A, Tiitinen S, Natunen S, Aitio O, Miller-Podraza H, Wuhrer M, Deelder AM, Natunen J, Laine J, Lehenkari P, Saarinen J, Satomaa T, Valmu L (2009) Glycomics of bone marrow-derived mesenchymal stem cells can be used to evaluate their cellular differentiation stage. Glycoconj J 26(3):367–384. https://doi.org/10.1007/s10719-008-9217-6

    Article  CAS  PubMed  Google Scholar 

  72. Delcroix GJ, Schiller PC, Benoit JP, Montero-Menei CN (2010) Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials 31(8):2105–2120. https://doi.org/10.1016/j.biomaterials.2009.11.084

    Article  CAS  PubMed  Google Scholar 

  73. Cai A, Qiu R, Li L, Zheng D, Dong Y, Yu D, Huang Y, Rao S, Zhou Y, Mai W (2013) Atorvastatin treatment of rats with ischemia-reperfusion injury improves adipose-derived mesenchymal stem cell migration and survival via the SDF-1α/CXCR-4 axis. PLoS ONE 8(12):e79100. https://doi.org/10.1371/journal.pone.0079100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang Y, Fu W, Zhang S, He X, Liu Z, Gao D, Xu T (2014) CXCR-7 receptor promotes SDF-1α-induced migration of bone marrow mesenchymal stem cells in the transient cerebral ischemia/reperfusion rat hippocampus. Brain Res 1575:78–86. https://doi.org/10.1016/j.brainres.2014.05.035

    Article  CAS  PubMed  Google Scholar 

  75. Tsai L-K, Wang Z, Munasinghe J, Leng Y, Leeds P, Chuang D-M (2011) Mesenchymal stem cells primed with valproate and lithium robustly migrate to infarcted regions and facilitate recovery in a stroke model. Stroke 42(10):2932–2939. https://doi.org/10.1161/STROKEAHA.110.612788

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wang L, Li Y, Chen X, Chen J, Gautam SC, Xu Y, Chopp M (2002) MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology (Amsterdam, Netherlands) 7(2):113–117. https://doi.org/10.1080/10245330290028588

    Article  CAS  Google Scholar 

  77. Bang OY, Moon GJ, Kim DH, Lee JH, Kim S, Son JP, Cho YH, Chang WH, Kim YH (2017) Stroke induces mesenchymal stem cell migration to infarcted brain areas Via CXCR4 and C-Met signaling. Trans Stroke Res. https://doi.org/10.1007/s12975-017-0538-2

    Article  Google Scholar 

  78. Kim GH, Subash M, Yoon JS, Jo D, Han J, Hong JM, Kim SS, Suh-Kim H (2020) Neurogenin-1 overexpression increases the therapeutic effects of mesenchymal stem cells through enhanced engraftment in an ischemic rat brain. Internat J Stem Cells 13(1):127–141. https://doi.org/10.15283/ijsc19111

    Article  CAS  Google Scholar 

  79. Mitkari B, Nitzsche F, Kerkelä E, Kuptsova K, Huttunen J, Nystedt J, Korhonen M, Jolkkonen J (2014) Human bone marrow mesenchymal stem/stromal cells produce efficient localization in the brain and enhanced angiogenesis after intra-arterial delivery in rats with cerebral ischemia, but this is not translated to behavioral recovery. Behav Brain Res 259:50–59. https://doi.org/10.1016/j.bbr.2013.10.030

    Article  PubMed  Google Scholar 

  80. Bao X, Feng M, Wei J, Han Q, Zhao H, Li G, Zhu Z, Xing H, An Y, Qin C, Zhao RC, Wang R (2011) Transplantation of Flk-1+ human bone marrow-derived mesenchymal stem cells promotes angiogenesis and neurogenesis after cerebral ischemia in rats. Eur J Neurosci 34(1):87–98. https://doi.org/10.1111/j.1460-9568.2011.07733.x

    Article  PubMed  Google Scholar 

  81. Gutiérrez-Fernández M, Rodríguez-Frutos B, Ramos-Cejudo J, Teresa Vallejo-Cremades M, Fuentes B, Cerdán S, Díez-Tejedor E (2013) Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Thera 4(1):11. https://doi.org/10.1186/scrt159

    Article  CAS  Google Scholar 

  82. Hao L, Zou Z, Tian H, Zhang Y, Zhou H, Liu L (2014) Stem cell-based therapies for ischemic stroke. Biomed Res Int 2014:468748. https://doi.org/10.1155/2014/468748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zong X, Wu S, Li F, Lv L, Han D, Zhao N, Yan X, Hu S, Xu T (2017) Transplantation of VEGF-mediated bone marrow mesenchymal stem cells promotes functional improvement in a rat acute cerebral infarction model. Brain Res 1676:9–18. https://doi.org/10.1016/j.brainres.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  84. Ferguson SW, Wang J, Lee CJ, Liu M, Neelamegham S, Canty JM, Nguyen J (2018) The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep 8(1):1419. https://doi.org/10.1038/s41598-018-19581-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Deng YB, Ye WB, Hu ZZ, Yan Y, Wang Y, Takon BF, Zhou GQ, Zhou YF (2010) Intravenously administered BMSCs reduce neuronal apoptosis and promote neuronal proliferation through the release of VEGF after stroke in rats. Neurol Res 32(2):148–156. https://doi.org/10.1179/174313209x414434

    Article  CAS  PubMed  Google Scholar 

  86. Bao X, Wei J, Feng M, Lu S, Li G, Dou W, Ma W, Ma S, An Y, Qin C, Zhao RC, Wang R (2011) Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res 1367:103–113. https://doi.org/10.1016/j.brainres.2010.10.063

    Article  CAS  PubMed  Google Scholar 

  87. Zhang Y, Ma L, Su Y, Su L, Lan X, Wu D, Han S, Li J, Kvederis L, Corey S, Borlongan CV, Ji X (2019) Hypoxia conditioning enhances neuroprotective effects of aged human bone marrow mesenchymal stem cell-derived conditioned medium against cerebral ischemia in vitro. Brain Res 1725:146432. https://doi.org/10.1016/j.brainres.2019.146432

    Article  CAS  PubMed  Google Scholar 

  88. Li Y, Chen J, Wang L, Lu M, Chopp M (2001) Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 56(12):1666–1672. https://doi.org/10.1212/wnl.56.12.1666

    Article  CAS  PubMed  Google Scholar 

  89. Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD (2008) Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Blood Flow Metab Internat Soc Cerebral 28(2):329–340. https://doi.org/10.1038/sj.jcbfm.9600527

    Article  CAS  Google Scholar 

  90. Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T, Masuda J, Kobayashi S, Kim SU, Yamaguchi S (2010) Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res 88(5):1017–1025. https://doi.org/10.1002/jnr.22279

    Article  CAS  PubMed  Google Scholar 

  91. Zacharek A, Shehadah A, Chen J, Cui X, Roberts C, Lu M, Chopp M (2010) Comparison of bone marrow stromal cells derived from stroke and normal rats for stroke treatment. Stroke 41(3):524–530. https://doi.org/10.1161/strokeaha.109.568881

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lin YC, Ko TL, Shih YH, Lin MY, Fu TW, Hsiao HS, Hsu JY, Fu YS (2011) Human umbilical mesenchymal stem cells promote recovery after ischemic stroke. Stroke 42(7):2045–2053. https://doi.org/10.1161/strokeaha.110.603621

    Article  PubMed  Google Scholar 

  93. Toyoshima A, Yasuhara T, Kameda M, Morimoto J, Takeuchi H, Wang F, Sasaki T, Sasada S, Shinko A, Wakamori T, Okazaki M, Kondo A, Agari T, Borlongan CV, Date I (2015) Intra-Arterial transplantation of allogeneic mesenchymal stem cells mounts neuroprotective effects in a transient ischemic stroke model in rats: analyses of therapeutic time window and its mechanisms. PLoS ONE 10(6):e0127302. https://doi.org/10.1371/journal.pone.0127302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ghazavi H, Hoseini SJ, Ebrahimzadeh-Bideskan A, Mashkani B, Mehri S, Ghorbani A, Sadri K, Mahdipour E, Ghasemi F, Forouzanfar F, Hoseini A, Pasdar AR, Sadeghnia HR, Ghayour-Mobarhan M (2017) Fibroblast Growth Factor Type 1 (FGF1)-overexpressed adipose-derived mesenchaymal stem cells (AD-MSC) induce neuroprotection and functional recovery in a rat stroke model. Stem Cell Rev Rep 13(5):670–685. https://doi.org/10.1007/s12015-017-9755-z

    Article  PubMed  Google Scholar 

  95. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Nv B, Chopp M (2000) VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 106(7):829–838. https://doi.org/10.1172/jci9369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science (New York, NY) 286(5449):2511–2514. https://doi.org/10.1126/science.286.5449.2511

    Article  CAS  Google Scholar 

  97. Guo F, Lv S, Lou Y, Tu W, Liao W, Wang Y, Deng Z (2012) Bone marrow stromal cells enhance the angiogenesis in ischaemic cortex after stroke: involvement of notch signalling. Cell Biol Int 36(11):997–1004. https://doi.org/10.1042/cbi20110596

    Article  CAS  PubMed  Google Scholar 

  98. Zhu J, Liu Q, Jiang Y, Wu L, Xu G, Liu X (2015) Enhanced angiogenesis promoted by human umbilical mesenchymal stem cell transplantation in stroked mouse is Notch1 signaling associated. Neuroscience 290:288–299. https://doi.org/10.1016/j.neuroscience.2015.01.038

    Article  CAS  PubMed  Google Scholar 

  99. Liu K, Ji K, Guo L, Wei Wu, Huixia Lu, Shan P, Yan C (2014) Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res 92:10–18. https://doi.org/10.1016/j.mvr.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  100. Moon GJ, Sung JH, Kim DH, Kim EH, Cho YH, Son JP, Cha JM, Bang OY (2019) Application of Mesenchymal Stem Cell-Derived Extracellular Vesicles for Stroke: Biodistribution and MicroRNA Study. Trans Stroke Res 10(5):509–521. https://doi.org/10.1007/s12975-018-0668-1

    Article  CAS  Google Scholar 

  101. Sato K, Ozaki K, Iekuni Oh, Meguro A, Hatanaka K, Nagai T, Muroi K, Ozawa K (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109(1):228–234

    Article  CAS  PubMed  Google Scholar 

  102. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17(7):796–808. https://doi.org/10.1038/nm.2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843. https://doi.org/10.1182/blood.v99.10.3838

    Article  PubMed  Google Scholar 

  104. Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E, Mantegazza R, Frassoni F, Mancardi G, Pedotti R, Uccelli A (2007) Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol 61(3):219–227. https://doi.org/10.1002/ana.21076

    Article  CAS  PubMed  Google Scholar 

  105. Hess DC, Wechsler LR, Clark WM, Savitz SI, Ford GA, Chiu D, Yavagal DR, Uchino K, Liebeskind DS, Auchus AP, Sen S, Sila CA, Vest JD, Mays RW (2017) Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 16(5):360–368. https://doi.org/10.1016/s1474-4422(17)30046-7

    Article  PubMed  Google Scholar 

  106. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107(1):367–372. https://doi.org/10.1182/blood-2005-07-2657

    Article  CAS  PubMed  Google Scholar 

  107. Marigo I, Dazzi F (2011) The immunomodulatory properties of mesenchymal stem cells. Sem Immunopathol 33(6):593–602. https://doi.org/10.1007/s00281-011-0267-7

    Article  Google Scholar 

  108. Yoo SW, Chang DY, Lee HS, Kim GH, Park JS, Ryu BY, Joe EH, Lee YD, Kim SS, Suh-Kim H (2013) Immune following suppression mesenchymal stem cell transplantation in the ischemic brain is mediated by TGF-β. Neurobiol Dis 58:249–257. https://doi.org/10.1016/j.nbd.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  109. Liu N, Chen R, Du H, Wang J, Zhang Y, Wen J (2009) Expression of IL-10 and TNF-alpha in rats with cerebral infarction after transplantation with mesenchymal stem cells. Cell Mol Immunol 6(3):207–213. https://doi.org/10.1038/cmi.2009.28

    Article  PubMed  PubMed Central  Google Scholar 

  110. Li J, Zhu H, Liu Y, Li Q, Lu S, Feng M, Xu Y, Huang L, Ma C, An Y, Zhao RC, Wang R, Qin C (2010) Human mesenchymal stem cell transplantation protects against cerebral ischemic injury and upregulates interleukin-10 expression in Macacafascicularis. Brain Res 1334:65–72. https://doi.org/10.1016/j.brainres.2010.03.080

    Article  CAS  PubMed  Google Scholar 

  111. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822. https://doi.org/10.1182/blood-2004-04-1559

    Article  CAS  PubMed  Google Scholar 

  112. Zhu Y, Guan YM, Huang HL, Wang QS (2014) Human umbilical cord blood mesenchymal stem cell transplantation suppresses inflammatory responses and neuronal apoptosis during early stage of focal cerebral ischemia in rabbits. Acta Pharmacol Sin 35(5):585–591. https://doi.org/10.1038/aps.2014.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ma S, Zhong D, Chen H, Zheng Y, Sun Y, Luo J, Li H, Li G, Yin Y (2013) The immunomodulatory effect of bone marrow stromal cells (BMSCs) on interleukin (IL)-23/IL-17-mediated ischemic stroke in mice. J Neuroimmunol 257:28–35. https://doi.org/10.1016/j.jneuroim.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  114. Leu S, Lin YC, Yuen CM, Yen CH, Kao YH, Sun CK, Yip HK (2010) Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J Trans Med 8:63. https://doi.org/10.1186/1479-5876-8-63

    Article  CAS  Google Scholar 

  115. Paul G, Anisimov SV (2013) The secretome of mesenchymal stem cells: potential implications for neuroregeneration. Biochimie 95(12):2246–2256. https://doi.org/10.1016/j.biochi.2013.07.013

    Article  CAS  PubMed  Google Scholar 

  116. Song M, Mohamad O, Xiaohuan Gu, Wei L, Shan Ping Yu (2013) Restoration of intracortical and thalamocortical circuits after transplantation of bone marrow mesenchymal stem cells into the ischemic brain of mice. Cell Transplant 22(11):2001–2015. https://doi.org/10.3727/096368912X657909

    Article  PubMed  Google Scholar 

  117. Ishizaka S, Horie N, Satoh K, Fukuda Y, Nishida N, Nagata I (2013) Intra-arterial cell transplantation provides timing-dependent cell distribution and functional recovery after stroke. Stroke 44(3):720–726. https://doi.org/10.1161/strokeaha.112.677328

    Article  PubMed  Google Scholar 

  118. Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350(6315):230–232. https://doi.org/10.1038/350230a0

    Article  CAS  PubMed  Google Scholar 

  119. Liesz A, Bauer A, Hoheisel JD, Veltkamp R (2014) Intracerebral interleukin-10 injection modulates post-ischemic neuroinflammation: an experimental microarray study. Neurosci Lett 579:18–23. https://doi.org/10.1016/j.neulet.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  120. Nakajima M, Nito C, Sowa K, Suda S, Nishiyama Y, Nakamura-Takahashi A, Nitahara-Kasahara Y, Imagawa K, Hirato T, Ueda M, Kimura K, Okada T (2017) Mesenchymal stem cells overexpressing interleukin-10 promote neuroprotection in experimental acute ischemic stroke. Mole Thera Method Clin Dev 6:102–111. https://doi.org/10.1016/j.omtm.2017.06.005

    Article  CAS  Google Scholar 

  121. Giunti D, Parodi B, Usai C, Vergani L, Casazza S, Bruzzone S, Mancardi G, Uccelli A (2012) Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1. Stem Cells (Dayton, Ohio) 30(9):2044–2053. https://doi.org/10.1002/stem.1174

    Article  CAS  Google Scholar 

  122. Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, Katakowski M, Zhang LJ, Lu M, Janakiraman N, Chopp M (2002) Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59(4):514–523. https://doi.org/10.1212/wnl.59.4.514

    Article  CAS  PubMed  Google Scholar 

  123. Jiang W, Liang G, Li X, Li Z, Gao X, Feng S, Wang X, Liu M, Liu Y (2014) Intracarotid transplantation of autologous adipose-derived mesenchymal stem cells significantly improves neurological deficits in rats after MCAo. J Mat Sci Mat Med 25(5):1357–1366. https://doi.org/10.1007/s10856-014-5157-9

    Article  CAS  Google Scholar 

  124. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, Xu K (2020) Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflam 17(1):46. https://doi.org/10.1186/s12974-020-1725-8

    Article  CAS  Google Scholar 

  125. Xin H, Li Y, Shen LH, Liu X, Wang X, Zhang J, Pourabdollah-Nejad DS, Zhang C, Zhang L, Jiang H, Zhang ZG, Chopp M (2010) Increasing tPA activity in astrocytes induced by multipotent mesenchymal stromal cells facilitate neurite outgrowth after stroke in the mouse. PLoS ONE 5(2):e9027. https://doi.org/10.1371/journal.pone.0009027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Song M, Mohamad O, Gu X, Wei L, Yu SP (2013) Restoration of intracortical and thalamocortical circuits after transplantation of bone marrow mesenchymal stem cells into the ischemic brain of mice. Cell Transplant 22(11):2001–2015. https://doi.org/10.3727/096368912x657909

    Article  PubMed  Google Scholar 

  127. Shen LH, Li Y, Chen J, Cui Y, Zhang C, Kapke A, Lu M, Savant-Bhonsale S, Chopp M (2007) One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke 38(7):2150–2156. https://doi.org/10.1161/strokeaha.106.481218

    Article  PubMed  Google Scholar 

  128. Shen LH, Xin H, Li Y, Zhang RL, Cui Y, Zhang L, Lu M, Zhang ZG, Chopp M (2011) Endogenous tissue plasminogen activator mediates bone marrow stromal cell-induced neurite remodeling after stroke in mice. Stroke 42(2):459–464. https://doi.org/10.1161/strokeaha.110.593863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fisher M (2009) Pericyte signaling in the neurovascular unit. Stroke 40:S13–15. https://doi.org/10.1161/strokeaha.108.533117

    Article  CAS  PubMed  Google Scholar 

  130. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702. https://doi.org/10.1016/j.neuron.2011.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cheng Q, Zhang Z, Zhang S, Yang H, Zhang X, Pan J, Weng L, Sha D, Zhu M, Hu X, Xu Y (2015) Human umbilical cord mesenchymal stem cells protect against ischemic brain injury in mouse by regulating peripheral immunoinflammation. Brain Res 1594:293–304. https://doi.org/10.1016/j.brainres.2014.10.065

    Article  CAS  PubMed  Google Scholar 

  132. Liu Z, Li Y, Zhang ZG, Cui X, Cui Y, Lu M, Savant-Bhonsale S, Chopp M (2010) Bone marrow stromal cells enhance inter- and intracortical axonal connections after ischemic stroke in adult rats. J Blood Flow Metab Internat Soc Cerebral Blood Flow Metab 30(7):1288–1295. https://doi.org/10.1038/jcbfm.2010.8

    Article  Google Scholar 

  133. Walker PA, Harting MT, Jimenez F, Shah SK, Pati S, Dash PK, Cox CS (2010) Direct intrathecal implantation of mesenchymal stromal cells leads to enhanced neuroprotection via an NFkappaB-mediated increase in interleukin-6 production. Stem Cells Develop 19(6):867–876. https://doi.org/10.1089/scd.2009.0188

    Article  CAS  Google Scholar 

  134. Xin H, Li Y, Chen X, Chopp M (2006) Bone marrow stromal cells induce BMP2/4 production in oxygen-glucose-deprived astrocytes, which promotes an astrocytic phenotype in adult subventricular progenitor cells. J Neurosci Res 83(8):1485–1493. https://doi.org/10.1002/jnr.20834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Schäbitz WR, Steigleder T, Cooper-Kuhn CM, Schwab S, Sommer C, Schneider A, Kuhn HG (2007) Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke 38(7):2165–2172. https://doi.org/10.1161/strokeaha.106.477331

    Article  PubMed  Google Scholar 

  136. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174(1):11–20. https://doi.org/10.1006/exnr.2001.7853

    Article  PubMed  Google Scholar 

  137. Yang M, Wei X, Li J, Heine LA, Rosenwasser R, Iacovitti L (2010) Changes in host blood factors and brain glia accompanying the functional recovery after systemic administration of bone marrow stem cells in ischemic stroke rats. Cell Transplant 19(9):1073–1084. https://doi.org/10.3727/096368910x503415

    Article  PubMed  Google Scholar 

  138. Ding D-C, Shyu W-C, Chiang M-F, Lin S-Z, Chang Y-C, Wang H-J, Ching-Yuan Su, Li H (2007) Enhancement of neuroplasticity through upregulation of beta1-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiol Dis 27(3):339–353

    Article  CAS  PubMed  Google Scholar 

  139. Zhang J, Li Y, Chen J, Yang M, Katakowski M, Lu M, Chopp M (2004) Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res 1030(1):19–27. https://doi.org/10.1016/j.brainres.2004.09.061

    Article  CAS  PubMed  Google Scholar 

  140. Toyama K, Honmou O, Harada K, Suzuki J, Houkin K, Hamada H, Kocsis JD (2009) Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia. Exp Neurol 216(1):47–55. https://doi.org/10.1016/j.expneurol.2008.11.010

    Article  CAS  PubMed  Google Scholar 

  141. Liew A, O'Brien T (2012) Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res Ther 3(4):28. https://doi.org/10.1186/scrt119

    Article  PubMed  PubMed Central  Google Scholar 

  142. Chen J, Venkat P, Zacharek A, Chopp M (2014) Neurorestorative therapy for stroke. Front Human Neurosci 8:382. https://doi.org/10.3389/fnhum.2014.00382

    Article  Google Scholar 

  143. Wei L, Fraser JL, Lu ZY, Hu X, Yu SP (2012) Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis 46(3):635–645. https://doi.org/10.1016/j.nbd.2012.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Darsalia V, Mansouri S, Ortsäter H, Olverling A, Nozadze N, Kappe C, Iverfeldt K, Tracy LM, Grankvist N, Sjöholm Å, Patrone C (2012) Glucagon-like peptide-1 receptor activation reduces ischaemic brain damage following stroke in type 2 diabetic rats. Clin Sci (London, England 1979) 122(10):473–483

    Article  CAS  Google Scholar 

  145. Nasef A, Mathieu N, Chapel A, Frick J, François S, Mazurier C, Boutarfa A, Bouchet S, Gorin NC, Thierry D, Fouillard L (2007) Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 84(2):231–237. https://doi.org/10.1097/01.tp.0000267918.07906.08

    Article  CAS  PubMed  Google Scholar 

  146. Li D, Fang Y, Wang P, Shan W, Zuo Z, Xie L (2012) Autologous transplantation of adipose-derived mesenchymal stem cells attenuates cerebral ischemia and reperfusion injury through suppressing apoptosis and inducible nitric oxide synthase. Int J Mol Med 29(5):848–854. https://doi.org/10.3892/ijmm.2012.909

    Article  CAS  PubMed  Google Scholar 

  147. Paul G, Özen I, Christophersen NS, Reinbothe T, Bengzon J, Visse E, Jansson K, Dannaeus K, Henriques-Oliveira C, Roybon L, Anisimov SV, Renström E, Svensson M, Haegerstrand A, Brundin P (2012) The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS ONE 7(4):e35577. https://doi.org/10.1371/journal.pone.0035577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109(10):1292–1298. https://doi.org/10.1161/01.cir.0000121425.42966.f1

    Article  PubMed  Google Scholar 

  149. Abu Kasim NH, Govindasamy V, Gnanasegaran N, Musa S, Pradeep PJ, Srijaya TC, Aziz ZA (2015) Unique molecular signatures influencing the biological function and fate of post-natal stem cells isolated from different sources. J Tissue Eng Regen Med 9(12):E252–266. https://doi.org/10.1002/term.1663

    Article  CAS  PubMed  Google Scholar 

  150. Kim Y, Kim H, Cho H, Bae Y, Suh K, Jung J (2007) Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Internat J Expe Cell Physiol Biochem Pharmacol 20(6):867–876. https://doi.org/10.1159/000110447

    Article  CAS  Google Scholar 

  151. Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, Granton J, Stewart DJ (2012) Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS ONE 7(10):e47559. https://doi.org/10.1371/journal.pone.0047559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hess DC, Sila CA, Furlan AJ, Wechsler LR, Switzer JA, Mays RW (2014) A double-blind placebo-controlled clinical evaluation of MultiStem for the treatment of ischemic stroke. Internat J Expe Cell Physiol Biochem Pharmacol 9(3):381–386. https://doi.org/10.1111/ijs.12065

    Article  Google Scholar 

  153. Bang OY, Lee JS, Lee PH, Lee G (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57(6):874–882. https://doi.org/10.1002/ana.20501

    Article  PubMed  Google Scholar 

  154. Suárez-Monteagudo C, Hernández-Ramírez P, Alvarez-González L, García-Maeso I, de la Cuétara-Bernal K, Castillo-Díaz L, Bringas-Vega ML, Martínez-Aching G, Morales-Chacón LM, Báez-Martín MM, Sánchez-Catasús C, Carballo-Barreda M, Rodríguez-Rojas R, Gómez-Fernández L, Alberti-Amador E, Macías-Abraham C, Balea ED, Rosales LC, Del Valle PL, Ferrer BB, González RM, Bergado JA (2009) Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restorate Neurol Neurosci 27(3):151–161. https://doi.org/10.3233/rnn-2009-0483

    Article  Google Scholar 

  155. Jaillard A, Hommel M, Moisan A, Zeffiro TA, Favre-Wiki IM, Barbieux-Guillot M, Vadot W, Marcel S, Lamalle L, Grand S, Detante O (2020) Autologous mesenchymal stem cells improve motor recovery in subacute ischemic stroke: a randomized clinical trial. Trans Stroke Res. https://doi.org/10.1007/s12975-020-00787-z

    Article  Google Scholar 

  156. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY (2010) A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells (Dayton, Ohio) 28(6):1099–1106. https://doi.org/10.1002/stem.430

    Article  Google Scholar 

  157. Jiang Y, Zhu W, Zhu J, Wu L, Xu G, Liu X (2013) Feasibility of delivering mesenchymal stem cells via catheter to the proximal end of the lesion artery in patients with stroke in the territory of the middle cerebral artery. Cell Transplant 22(12):2291–2298. https://doi.org/10.3727/096368912x658818

    Article  PubMed  Google Scholar 

  158. Vezzani B, Gomez-Salazar M, Casamitjana J, Tremolada C, Péault B (2019) Human adipose tissue micro-fragmentation for cell phenotyping and secretome characterization. J Visual Exp JoVE 1:52. https://doi.org/10.3791/60117

    Article  CAS  Google Scholar 

  159. Díez-Tejedor E, Gutiérrez-Fernández M, Martínez-Sánchez P, Rodríguez-Frutos B, Ruiz-Ares G, Lara ML, Gimeno BF (2014) Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: a phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J Dis Off J Nat Stroke Ass 23(10):2694–2700. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.06.011

    Article  Google Scholar 

  160. Ryan JM, Barry FP, Murphy JM, Mahon BP (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflam (London, England) 2:8. https://doi.org/10.1186/1476-9255-2-8

    Article  CAS  Google Scholar 

  161. Griffin MD, Ritter T, Mahon BP (2010) Immunological aspects of allogeneic mesenchymal stem cell therapies. Hum Gene Ther 21(12):1641–1655. https://doi.org/10.1089/hum.2010.156

    Article  CAS  PubMed  Google Scholar 

  162. Levy ML, Crawford JR, Dib N, Verkh L, Tankovich N, Cramer SC (2019) Phase I/II study of safety and preliminary efficacy of intravenous allogeneic mesenchymal stem cells in chronic stroke. Stroke 50(10):2835–2841. https://doi.org/10.1161/strokeaha.119.026318

    Article  PubMed  Google Scholar 

  163. Steinberg GK, Kondziolka D, Wechsler LR, Lunsford LD, Coburn ML, Billigen JB, Kim AS, Johnson JN, Bates D, King B, Case C, McGrogan M, Yankee EW, Schwartz NE (2016) Clinical outcomes of transplanted modified bone marrow-derived mesenchymal stem cells in stroke: a phase 1/2a study. Stroke 47(7):1817–1824. https://doi.org/10.1161/strokeaha.116.012995

    Article  PubMed  PubMed Central  Google Scholar 

  164. Haider HKh, Ashraf M (2008) Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol 45(4):554–566. https://doi.org/10.1016/j.yjmcc.2008.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD (2011) Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain J Neurol 134:1790–1807. https://doi.org/10.1093/brain/awr063

    Article  Google Scholar 

  166. Brown J, Park YJ, Lee JY, Chase TN, Koga M, Borlongan CV (2020) Bone Marrow-Derived NCS-01 cells advance a novel cell-based therapy for stroke. Internat J Mole Sci 21:8. https://doi.org/10.3390/ijms21082845

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizong Zhao.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical standards

This study was approved by the Institutional Review Board of Beijing Tiantan Hospital.

Informed consent

The manuscript does not contain patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, Q., Wang, W. et al. Mesenchymal stem cell therapy for ischemic stroke: A look into treatment mechanism and therapeutic potential. J Neurol 268, 4095–4107 (2021). https://doi.org/10.1007/s00415-020-10138-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-10138-5

Keywords

Navigation