Skip to main content

Advertisement

Log in

A new tetra-plex fluorimetric assay for the quantification of cerebrospinal fluid β-amyloid42, total-tau, phospho-tau and α-synuclein in the differential diagnosis of neurodegenerative dementia

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Differential diagnosis of neurodegenerative dementia is currently supported by biomarkers including cerebrospinal fluid (CSF) tests. Among them, CSF total-tau (t-tau), phosphorylated tau (p-tau) and β-amyloid42 (Aβ42) are considered core biomarkers of neurodegeneration. In the present work, we hypothesize that simultaneous assessment of these biomarkers together with CSF α-synuclein (α-syn) will significantly improve the differential diagnostic of Alzheimer’s disease and other dementias. To that aim, we characterized the analytical and clinical performance of a new tetra-plex immunoassay that simultaneously quantifies CSF Aβ42, t-tau, p-tau and α-syn in the differential diagnosis of neurodegenerative dementia.

Methods

Biomarkers’ concentrations were measured in neurological controls (n = 38), Alzheimer’s disease (n = 35), Creutzfeldt–Jakob disease (n = 37), vascular dementia (n = 28), dementia with Lewy bodies/Parkinson’s disease dementia (n = 27) and frontotemporal dementia (n = 34) using the new tetra-plex assay and established single-plex assays. Biomarker’s performance was evaluated and diagnostic accuracy in the discrimination of diagnostic groups was determined using partial least squares discriminant analysis.

Results

The tetra-plex assay presented accuracies similar to individual single-plex assays with acceptable analytical performance. Significant correlations were observed between tetra-plex and single-plex assays. Using partial least squares discriminant analysis, Alzheimer’s disease and Creutzfeldt–Jakob disease were well differentiated, reaching high accuracies in the discrimination from the rest of diagnostic groups.

Conclusions

The new tetra-plex assay coupled with multivariate analytical approaches becomes a valuable asset for the differential diagnosis of neurodegenerative dementia and related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CSF:

Cerebrospinal fluid

AD:

Alzheimer’s disease

CJD:

Creutzfeldt–Jakob disease

t-tau:

Total-tau

p-tau:

Phosphorylated tau

Aβ42:

β-Amyloid42

RT-QuIC:

Real-time quacking-induced conversion

VaD:

Vascular dementia

LBD:

Lewy body diseases

FTD:

Fronto-temporal dementia

α-syn:

α-Synuclein

ND:

Neurological controls

DLB:

Dementia with Lewy bodies

PDD:

Parkinson’s disease dementia

bvFTD:

Behavioral variant FTD

LM:

Linear models

LRT:

Likelihood ratio tests

AUCs:

Areas under the curve

95% CI:

95% Confidence intervals

ROC:

Receiver operating characteristic

PLS-DA:

Partial least squares discriminant analysis

CV:

Intra-coefficient of variation

RT:

Room temperature

F/T:

Freeze/thawing

PCA:

Principal component analysis

VIP:

Variable importance for the projection

SD:

Standard deviation

f:

Female

m:

Male

References

  1. Armstrong RA, Lantos PL, Cairns NJ (2005) Overlap between neurodegenerative disorders. Neuropathology 25:111–124

    PubMed  Google Scholar 

  2. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement [Internet] 7(3):263–269. https://www.ncbi.nlm.nih.gov/pubmed/21514250%5Cn, https://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3312024

  3. Hermann P, Laux M, Glatzel M, Matschke J, Knipper T, Goebel S et al (2018) Validation and utilization of amended diagnostic criteria in Creutzfeldt–Jakob disease surveillance. Neurology. https://www.neurology.org/lookup/doi/10.1212/WNL.0000000000005860

  4. Zerr I, Kallenberg K, Summers DM, Romero C, Taratuto A, Heinemann U et al (2009) Updated clinical diagnostic criteria for sporadic Creutzfeldt–Jakob disease. Brain 132(Pt 10):2659–2668

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schmitz M, Ebert E, Stoeck K, Karch A, Collins S, Calero M et al (2016) Validation of 14-3-3 protein as a marker in sporadic Creutzfeldt–Jakob disease diagnostic. Mol Neurobiol 53(4):2189–2199

    CAS  PubMed  Google Scholar 

  6. Cramm M, Schmitz M, Karch A, Mitrova E, Kuhn F, Schroeder B et al (2016) Stability and reproducibility underscore utility of RT-QuIC for diagnosis of Creutzfeldt–Jakob disease. Mol Neurobiol 53(3):1896–1904

    CAS  PubMed  Google Scholar 

  7. Llorens F, Schmitz M, Karch A, Cramm M, Lange P, Gherib K et al (2016) Comparative analysis of cerebrospinal fluid biomarkers in the differential diagnosis of neurodegenerative dementia. Alzheimer’s Dement 12(5):577–589

    Google Scholar 

  8. Schoonenboom NSM, Reesink FE, Verwey NA, Kester MI, Teunissen CE, Van De Ven PM et al (2012) Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort. Neurology 78(1):47–54

    CAS  PubMed  Google Scholar 

  9. Bruun M, Rhodius-Meester HFM, Koikkalainen J, Baroni M, Gjerum L, Lemstra AW et al (2018) Evaluating combinations of diagnostic tests to discriminate different dementia types. Alzheimer’s Dement Diagn Assess Dis Monit 10:509–518

    Google Scholar 

  10. Olsson A, Vanderstichele H, Andreasen N, De Meyer G, Wallin A, Holmberg B et al (2005) Simultaneous measurement of β-amyloid(1–42), total Tau, and phosphorylated Tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clin Chem 51(2):336–345

    CAS  PubMed  Google Scholar 

  11. Fagan AM, Shaw LM, Xiong C, Vanderstichele H, Mintun MA, Trojanowski JQ et al (2011) Comparison of analytical platforms for cerebrospinal fluid measures of β-amyloid 1–42, Total tau, and P-tau181 for identifying alzheimer disease amyloid plaque pathology. Arch Neurol 68(9):1137–1144

    PubMed  PubMed Central  Google Scholar 

  12. Vanderstichele H, De Meyer G, Andreasen N, Kostanjevecki V, Wallin A, Olsson A et al (2005) Amino-truncated β-amyloid 42 peptides in cerebrospinal fluid and prediction of progression of mild cognitive impairment. Clin Chem 51(9):1650–1660

    CAS  PubMed  Google Scholar 

  13. Lim X, Yeo JM, Green A, Pal S (2013) The diagnostic utility of cerebrospinal fluid alpha-synuclein analysis in dementia with Lewy bodies—a systematic review and meta-analysis. Parkinsonism Relat Disord 19:851–858

    PubMed  Google Scholar 

  14. Zhou B, Wen M, Yu WF, Zhang CL, Jiao L (2015) The diagnostic and differential diagnosis utility of cerebrospinal fluid α-synuclein levels in Parkinson’s disease: a meta-analysis. Parkinsons Dis. https://doi.org/10.1155/2015/567386

    Article  PubMed  PubMed Central  Google Scholar 

  15. Llorens F, Kruse N, Schmitz M, Gotzmann N, Golanska E, Thüne K et al (2016) Evaluation of α-synuclein as a novel cerebrospinal fluid biomarker in different forms of prion diseases. Alzheimer’s Dement [Internet]. https://linkinghub.elsevier.com/retrieve/pii/S1552526016330552

  16. Llorens F, Kruse N, Karch A, Schmitz M, Zafar S, Gotzmann N et al (2017) Validation of α-synuclein as a CSF biomarker for sporadic Creutzfeldt–Jakob disease. Mol Neurobiol [Internet]. https://link.springer.com/10.1007/s12035-017-0479-5

  17. Oeckl P, Metzger F, Nagl M, von Arnim CAF, Halbgebauer S, Steinacker P et al (2016) Alpha-, beta-, and gamma-synuclein quantification in cerebrospinal fluid by multiple reaction monitoring reveals increased concentrations in Alzheimer’s and Creutzfeldt–Jakob disease but no alteration in synucleinopathies. Mol Cell Proteomics [Internet] 15(10):3126–3138. https://www.mcponline.org/lookup/doi/10.1074/mcp.M116.059915

  18. Schmitz M, Villar-Piqué A, Llorens F, Gmitterová K, Hermann P, Varges D et al (2019) Cerebrospinal fluid total and phosphorylated α-synuclein in patients with Creutzfeldt–Jakob disease and synucleinopathy. Mol Neurobiol 56(5):3476–3483

    CAS  PubMed  Google Scholar 

  19. Shi M, Tang L, Toledo JB, Ginghina C, Wang H, Aro P et al (2018) Cerebrospinal fluid α-synuclein contributes to the differential diagnosis of Alzheimer’s disease. Alzheimer’s Dement 14(8):1052–1062

    Google Scholar 

  20. Chiasserini D, Biscetti L, Eusebi P, Salvadori N, Frattini G, Simoni S et al (2017) Differential role of CSF fatty acid binding protein 3, α-synuclein, and Alzheimer’s disease core biomarkers in Lewy body disorders and Alzheimer’s dementia. Alzheimer’s Res Ther 9(1):52

    Google Scholar 

  21. Twohig D, Rodriguez-Vieitez E, Sando SB, Berge G, Lauridsen C, Møller I et al (2018) The relevance of cerebrospinal fluid α-synuclein levels to sporadic and familial Alzheimer’s disease. Acta Neuropathol Commun 6(1):130

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134(9):2456–2477

    PubMed  PubMed Central  Google Scholar 

  23. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J-P, Weintraub D et al (2017) Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 89(1):88–100. https://www.ncbi.nlm.nih.gov/pubmed/28592453%0A, https://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5496518

  24. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601

    PubMed  Google Scholar 

  25. Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y et al (2007) Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 22:1689–1707

    PubMed  Google Scholar 

  26. Armstrong MJ, Litvan I, Lang AE, Bak TH, Bhatia KP, Borroni B et al (2013) Criteria for the diagnosis of corticobasal degeneration. Neurology 80(5):496–503

    PubMed  PubMed Central  Google Scholar 

  27. Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE et al (2017) Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 32(6):853–864

    PubMed  PubMed Central  Google Scholar 

  28. Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71(9):670–676

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Román GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH et al (1993) Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology. 43(2):250–260

    PubMed  Google Scholar 

  30. Zerr I, Kallenberg K, Summers DM, Romero C, Taratuto A, Heinemann U et al (2009) Updated clinical diagnostic criteria for sporadic Creutzfeldt–Jakob disease. Brain 132(10):2659–2668

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC et al (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform 12

  32. Passing H, Bablok W (1983) A new biometrical procedure for testing the equality of measurements from two different analytical methods. Clin Chem Lab Med [Internet] 21(11):709–720. https://www.degruyter.com/view/j/cclm.1983.21.issue-11/cclm.1983.21.11.709/cclm.1983.21.11.709.xml

  33. Pérez-Enciso M, Tenenhaus M (2003) Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach. Hum Genet [Internet] 112(5–6):581–592. https://www.ncbi.nlm.nih.gov/pubmed/12607117

  34. Services USD of H and H (2018) Guidance for industry: bioanalytical method validation guidance for industry bioanalytical method validation. US Food Drug Adm [Internet], 1–22. https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm

  35. Olsson A, Vanderstichele H, Andreasen N, De Meyer G, Wallin A, Holmberg B et al (2005) Simultaneous measurement of β-amyloid (1–42), total Tau, and phosphorylated Tau (Thr 181) in cerebrospinal fluid by the xMAP technology. Clin Chem 51(2):336–345

    CAS  PubMed  Google Scholar 

  36. Mattsson N, Andreasson U, Persson S, Arai H, Batish SD, Bernardini S et al (2011) The Alzheimer’s Association external quality control program for cerebrospinal fluid biomarkers. Alzheimer’s Dement 7(4):386–395

    CAS  Google Scholar 

  37. Leitão MJ, Silva-Spínola A, Santana I, Olmedo V, Nadal A, Le Bastard N et al (2019) Clinical validation of the Lumipulse G cerebrospinal fluid assays for routine diagnosis of Alzheimer’s disease. Alzheimer’s Res Ther 11(1)

  38. Kollhoff AL, Howell JC, Hu WT (2018) Automation vs. experience: Measuring Alzheimer’s beta-amyloid 1–42 peptide in the CSF. Front Aging Neurosci 10(AUG)

  39. Lifke V, Kollmorgen G, Manuilova E, Oelschlaegel T, Hillringhaus L, Widmann M et al (2019) Elecsys® Total-Tau and Phospho-Tau (181P) CSF assays: Analytical performance of the novel, fully automated immunoassays for quantification of tau proteins in human cerebrospinal fluid. Clin Biochem 72:30–38

    CAS  PubMed  Google Scholar 

  40. Toombs J, Paterson RW, Schott JM, Zetterberg H (2014) Amyloid-beta 42 adsorption following serial tube transfer. Alzheimer’s Res Ther 6(1)

  41. del Campo M, Mollenhauer B, Bertolotto A, Engelborghs S, Hampel H, Simonsen AH et al (2012) Recommendations to standardize preanalytical confounding factors in Alzheimer’s and Parkinson’s disease cerebrospinal fluid biomarkers: an update. Biomark Med 6(4):419–430

    PubMed  Google Scholar 

  42. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH et al (2011) The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement 7(3):263–269

    Google Scholar 

  43. Reijn TSM, Rikkert MO, Van Geel WJA, De Jong D, Verbeek MM (2007) Diagnostic accuracy of ELISA and xMAP technology for analysis of amyloid β42 and tau proteins. Clin Chem 53(5):859–865

    CAS  PubMed  Google Scholar 

  44. Sanchez-Juan P, Green A, Ladogana A, Cuadrado-Corrales N, Sáanchez-Valle R, Mitrováa E et al (2006) CSF tests in the differential diagnosis of Creutzfeldt–Jakob disease. Neurology 67(4):637–643

    CAS  PubMed  Google Scholar 

  45. Kruse N, Heslegrave A, Gupta V, Foiani M, Villar-Piqué A, Schmitz M et al (2018) Interlaboratory validation of cerebrospinal fluid α-synuclein quantification in the diagnosis of sporadic Creutzfeldt–Jakob disease. Alzheimer’s Dement Diagn Assess Dis Monit 10:461–470

    Google Scholar 

  46. Lim X, Yeo JM, Green A, Pal S (2013) The diagnostic utility of cerebrospinal fluid alpha-synuclein analysis in dementia with Lewy bodies—a systematic review and meta-analysis. Parkinsonism Relat Disord [Internet] 19(10):851–858. https://www.ncbi.nlm.nih.gov/pubmed/23886935

  47. Schmitz M, Villar-Piqué A, Llorens F, Gmitterová K, Hermann P, Varges D et al (2018) Cerebrospinal fluid total and phosphorylated α-synuclein in patients with Creutzfeldt–Jakob disease and synucleinopathy. Mol Neurobiol 56:3476–3483

    PubMed  Google Scholar 

  48. Majbour NK, Chiasserini D, Vaikath NN, Eusebi P, Tokuda T, Van De Berg W et al (2017) Increased levels of CSF total but not oligomeric or phosphorylateed forms of alpha-synuclein in patients diagnosed with probable Alzheimer’s disease. Sci Rep 7

  49. Llorens F, Kruse N, Schmitz M, Gotzmann N, Golanska E, Thüne K et al (2017) Evaluation of α-synuclein as a novel cerebrospinal fluid biomarker in different forms of prion diseases. Alzheimer’s Dement 13(6):710–719

    Google Scholar 

  50. Lattanzio F, Abu-Rumeileh S, Franceschini A, Kai H, Amore G, Poggiolini I et al (2017) Prion-specific and surrogate CSF biomarkers in Creutzfeldt–Jakob disease: diagnostic accuracy in relation to molecular subtypes and analysis of neuropathological correlates of p-tau and Aβ42 levels. Acta Neuropathol 133(4):559–578

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lehmann S, Paquet C, Malaplate-Armand C, Magnin E, Schraen S, Quillard-Muraine M et al (2019) Diagnosis associated with Tau higher than 1200 pg/mL: insights from the clinical and laboratory practice. Clin Chim Acta [Internet]. https://linkinghub.elsevier.com/retrieve/pii/S0009898119318406

  52. Zerr I, Schmitz M, Karch A, Villar-Piqué A, Kanata E, Golanska E et al (2018) Cerebrospinal fluid neurofilament light levels in neurodegenerative dementia: evaluation of diagnostic accuracy in the differential diagnosis of prion diseases. Alzheimer’s Dement [Internet]. https://www.ncbi.nlm.nih.gov/pubmed/29391125%0A, https://linkinghub.elsevier.com/retrieve/pii/S1552526018300025

  53. Landqvist Waldö M, Frizell Santillo A, Passant U, Zetterberg H, Rosengren L, Nilsson C et al (2013) Cerebrospinal fluid neurofilament light chain protein levels in subtypes of frontotemporal dementia. BMC Neurol [Internet] 13(1):54. https://bmcneurol.biomedcentral.com/articles/10.1186/1471-2377-13-54

Download references

Funding

This study was funded by the Instituto Carlos III (Grants CP/00041 and PI19/00144) and by the Fundació La Marató de TV3 (201821-30-31-32) to FL and by the Robert Koch Institute through funds from the Federal Ministry of Health (Grant no. 1369-341) to IZ. JADR received funding from MICINN (RTI2018-099773-B-100) and La Caixa Banking Foundation under the project code HR18-00452. This project was also funded at 65% by the Fondo Europeo de Desarrollo Regional (FEDER) through the Interreg V-A-Spain-France-Andorra (POCTEFA 2014–2020) programme. AVP is supported by the Beatriu de Pinós programme (2018-BP-00129) from the Ministry of Business and Knowledge of the Government of Catalonia, cofunded by the EU Horizon 2020 programme under an MSCA grant agreement (801370). We thank the CERCA Programme of Generalitat de Catalunya for institutional support.

Author information

Authors and Affiliations

Authors

Contributions

FL designed the study. DD-L, GE, AV-P, JADR, EM, IF and FL participated in the acquisition and analysis of data. PH, MS, IS, IB, IZ and FL collected and characterized biological samples and contributed to data interpretation. GE and FL drafted the manuscript and the figures. All authors critically revised the manuscript.

Corresponding author

Correspondence to Franc Llorens.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Ethical approval

Written informed consent was obtained from all study participants or their legal guardians. The study was conducted according to the revised Declaration of Helsinki and Good Clinical Practice guidelines, and was approved by all local Ethics committees (Reference numbers 11/11/93, 5/09/08, 9/06/08, 19/11/09, Universitätsmedizin Göttingen, Germany and HUC-43-09, University of Coimbra, Portugal).

Electronic supplementary material

Supplementary Figure 1. Analytical performance of new tetra-plex assay for quantification of CSF Aβ42, t-tau, p-tau and α-syn. (a) Analytical performance of the tetra-plex assay. Intra and inter coefficients of variation (CV), lower limit of quantification (LLOQ) and upper limit of quantification (ULOQ) and linearity are indicated for Aβ42, t-tau, p-tau and α-syn. (b) Representative standard curves for each biomarker.

Supplementary Figure 2. Comparison on diagnostic performance between tetra-plex (fluorimetric) and single-plex (colorimetric) assays. Area Under the Curve (AUC) derived from receiver operating characteristic curves with 95% confidence interval for the comparison for the tetra-plex and single-plex assays. Accuracy was calculated for the four biomarkers (Aβ42, t-tau, p-tau and α-syn) in the comparison among neurodegenerative dementias (AD, Alzheimer’s disease; CJD, Creutzfeldt-Jakob disease; VaD, vascular dementia; DLB/PDD, dementia with Lewy bodies and Parkinson’s disease dementia; FTD, frontotemporal dementia). Statistical differences between AUCs derived from tetra-plex and single-plex assays is indicated, with statistically significant values (considered as p<0.05) highlighted in bold.

Supplementary Figure 3. Patient outlier detection in the agreement analysis of tetra-plex and single-plex assays based on Cook’s distance.

Supplementary Figure 4. Unsupervised classification of ND, AD and CJD patients based on Principal Component Analysis (PCA). (a) First two PCA components involving t-tau, p-tau, α-syn, and Aβ42. (b) First two PCA components of t-tau, p-tau and Aβ42 in the absence of α-syn.

Supplementary Table 1. Sensitivities and specificities associated to the AUC comparisons between ND and neurodegenerative dementias. Sensitivities and specificities in % based in Youden index are indicated for each comparison for the four biomarkers in the tetra-plex and single-plex assays.

Supplementary Table 2. Diagnostic accuracy of the tetra-plex assay using PLS-DA in the discrimination of AD. PLS-DAs were constructed based on training datasets. Variable importance for the projection (VIP) criterion was used to identify which biomarkers contribute most on the classification performance. VIP scores estimate the contribution of each biomarker in the in the PLS-DA model, according to the variance explained by each PLS component. A biomarker with a VIP score close to or greater than 1 is considered important in the given model. Accuracy, sensitivity and specificity diagnostic measures are indicated. The training and test sets random partitions were generated 1000 times and statistical summaries (median, 2.5th and 97.5th quintiles, termed here 95% Confidence Interval) were computed for each diagnostic measure. Accuracies with random non informative data were obtained based on a permutation test involving 1000 data sets constructed by randomly reassigning class labels at each individual, then performing a PLS-DA on the new randomized training data sets and computing diagnostic measures in their respective 1000 randomized test sets. AD, Alzheimer’s disease; VaD, vascular dementia; DLB/PDD, dementia with Lewy bodies and Parkinson’s disease dementia; FTD, frontotemporal dementia. Aβ42, β-amyloid42; t-tau, total-tau, p-tau, phospho-tau and α-syn, α-synuclein.

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 84 kb)

Supplementary file2 (PDF 314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz-Lucena, D., Escaramis, G., Villar-Piqué, A. et al. A new tetra-plex fluorimetric assay for the quantification of cerebrospinal fluid β-amyloid42, total-tau, phospho-tau and α-synuclein in the differential diagnosis of neurodegenerative dementia. J Neurol 267, 2567–2581 (2020). https://doi.org/10.1007/s00415-020-09870-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-09870-9

Keywords

Navigation