Advertisement

Exit strategies for “needle fatigue” in multiple sclerosis: a propensity score-matched comparison study

  • Luca ProsperiniEmail author
  • Antonio Cortese
  • Matteo Lucchini
  • Laura Boffa
  • Giovanna Borriello
  • Maria Chiara Buscarinu
  • Fioravante Capone
  • Diego Centonze
  • Chiara De Fino
  • Daniela De Pascalis
  • Roberta Fantozzi
  • Elisabetta Ferraro
  • Maria Filippi
  • Simonetta Galgani
  • Claudio Gasperini
  • Shalom Haggiag
  • Doriana Landi
  • Girolama Marfia
  • Giorgia Mataluni
  • Enrico Millefiorini
  • Massimiliano Mirabella
  • Fabrizia Monteleone
  • Viviana Nociti
  • Simona Pontecorvo
  • Silvia Romano
  • Serena Ruggieri
  • Marco Salvetti
  • Carla Tortorella
  • Silvana Zannino
  • Giancarlo Di Battista
Original Communication
  • 64 Downloads

Abstract

Patients with multiple sclerosis on long-term injectable therapies may suffer from the so-called “needle fatigue”, i.e., a waning commitment to continue with the prescribed injectable treatment. Therefore, alternative treatment strategies to enhance patients’ adherence are warranted. In this independent, multicentre post-marketing study, we sought to directly compare switching to either teriflunomide (TFN), dimethyl fumarate (DMF), or pegylated interferon (PEG) on treatment persistence and time to first relapse over a 12-month follow-up. We analyzed a total of 621 patients who were free of relapses and gadolinium-enhancing lesions in the year prior to switching to DMF (n = 265), TFN (n = 160), or PEG (n = 196). Time to discontinuation and time to first relapse were explored in the whole population by Cox regression models adjusted for baseline variables and after a 1:1:1 ratio propensity score (PS)-based matching procedure. Treatment discontinuation was more frequent after switching to PEG (28.6%) than DMF (14.7%; hazard ratio [HR] = 0.25, p < 0.001) and TFN (16.9%; HR = 0.27, p < 0.001). We found similar results even in the re-sampled cohort of 222 patients (74 per group) derived by the PS-based matching procedure. The highest discontinuation rate observed in PEG recipient was mainly due to poor tolerability (p = 0.005) and pregnancy planning (p = 0.04). The low number of patients who relapsed over the 12-month follow-up (25 out of 621, approximately 4%) prevented any analysis on the short-term risk of relapse. This real-world study suggests that oral drugs are a better switching option than low-frequency interferon for promoting the short-term treatment persistence in stable patients who do not tolerate injectable drugs.

Keywords

Multiple sclerosis Treatment persistence Needle fatigue Oral drugs 

Notes

Compliance with ethical standard

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical statement

The present study was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. The local ethical committee boards provided exemption of approval for non-interventional studies. We obtained an informed consent from each participant prior to any study procedure. In no way, this study did interfere in the care received by patients.

Supplementary material

415_2019_9625_MOESM1_ESM.docx (538 kb)
Supplementary material 1 (DOCX 538 kb)

References

  1. 1.
    Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O (2018) Multiple sclerosis. Lancet 391:1622–1636CrossRefGoogle Scholar
  2. 2.
    Sabaté E (2003) Adherence to long-term therapies: evidence for action. WHO, GenevaGoogle Scholar
  3. 3.
    Rieckmann P, Boyko A, Centonze D et al (2015) Achieving patient engagement in multiple sclerosis: a perspective from the multiple sclerosis in the 21st century steering group. Mult Scler Relat Disord 4:202–218CrossRefGoogle Scholar
  4. 4.
    Clerico M, Barbero P, Contessa G, Ferrero C, Durelli L (2007) Adherence to interferon-β treatment and results of therapy switching. J Neurol Sci 259:104–108CrossRefGoogle Scholar
  5. 5.
    McKay KA, Tremlett H, Patten SB, CIHR Team in the Epidemiology and Impact of Comorbidity on Multiple Sclerosis et al (2017) Determinants of non-adherence to disease-modifying therapies in multiple sclerosis: a cross-Canada prospective study. Mult Scler 23:588–596CrossRefGoogle Scholar
  6. 6.
    Klauer T, Zettl UK (2008) Compliance, adherence, and the treatment of multiple sclerosis. J Neurol 7(suppl 6):87–92CrossRefGoogle Scholar
  7. 7.
    Treadaway K, Cutter G, Salter A et al (2009) Factors that influence adherence with disease-modifying therapies in MS. J Neurol 256:568–576CrossRefGoogle Scholar
  8. 8.
    Devonshire V, Lapierre Y, Macdonell R, GAP Study Group et al (2011) The Global Adherence Project: a multicenter observational study on adherence to disease-modifying therapies in patients with relapsing-remitting multiple sclerosis. Eur J Neurol 18:69–77CrossRefGoogle Scholar
  9. 9.
    Fernandez O, Aguera E, Izquierdo G, Group on Adherence to IFNB-1β in Spain et al (2012) Adherence to interferon-β1b treatment in patients with multiple sclerosis in Spain. PLoS ONE 7:e35600CrossRefGoogle Scholar
  10. 10.
    Nichols C, White LA, Friedman M, Pill MW (2013) Narrative review of the literature on adherence to disease-modifying therapies among patients with multiple sclerosis. J Manag Care Pharm 19(1 Suppl A):S24–S40Google Scholar
  11. 11.
    Conway DS, Cecilia Vieira M, Thompson NR et al (2018) Patient-reported disease-modifying therapy adherence in the clinic: a reliable metric? Mult Scler J Exp Transl Clin 4:2055217318777894PubMedPubMedCentralGoogle Scholar
  12. 12.
    Steinberg SC, Faris RJ, Chang CF, Chan A, Tankersley MA (2010) Impact of adherence to interferons in the treatment of multiple sclerosis: a non-experimental, retrospective, cohort study. Clin Drug Investig 30:89–100CrossRefGoogle Scholar
  13. 13.
    Tan H, Cai Q, Agarwal S, Stephenson JJ, Kamat S (2011) Impact of adherence to disease-modifying therapies on clinical and economic outcomes among patients with multiple sclerosis. Adv Ther 28:51–61CrossRefGoogle Scholar
  14. 14.
    Barbero P, Verdun E, Bergui M et al (2004) High-dose, frequently administered interferon-β therapy for relapsing-remitting multiple sclerosis must be maintained over the long term: the interferon-β dose-reduction study. J Neurol Sci 222:13–19CrossRefGoogle Scholar
  15. 15.
    Prosperini L, Mancinelli CR, Pozzilli C et al (2014) From high-to low-frequency administered interferon-beta for multiple sclerosis: a multicenter study. Eur Neurol 71:233–241CrossRefGoogle Scholar
  16. 16.
    Zhornitsky S, Greenfield J, Koch MW et al (2015) Long-term persistence with injectable therapy in relapsing-remitting multiple sclerosis: an 18-year observational cohort study. PLoS ONE 10:e0123824CrossRefGoogle Scholar
  17. 17.
    Caporro M, Disanto G, Gobbi C, Zecca C (2014) Two decades of subcutaneous glatiramer acetate injection: current role of the standard dose, and new high-dose low-frequency glatiramer acetate in relapsing-remitting multiple sclerosis treatment. Patient Prefer Adherence 8:1123–1134PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lanzillo R, Prosperini L, Gasperini C, R.I. Re.MS study group et al (2018) A multicentRE observational analysiS of PErsistenCe to Treatment in the new multiple sclerosis era: the RESPECT study. J Neurol 265:1174–1183CrossRefGoogle Scholar
  19. 19.
    Saccà F, Lanzillo R, Signori A, iMUST Group et al (2018) Determinants of therapy switch in multiple sclerosis treatment-naïve patients: a real-life study. Mult Scler.  https://doi.org/10.1177/1352458518790390 CrossRefGoogle Scholar
  20. 20.
    Setayeshgar S, Kingwell E, Zhu F et al (2019) Persistence and adherence to the new oral disease-modifying therapies for multiple sclerosis: a population-based study. Mult Scler Relat Disord 27:364–369CrossRefGoogle Scholar
  21. 21.
    Percorso Diagnostico Terapeutico Assistenziale (PDTA) Regione Lazio. regione.lazio.it/binary/rl_sanita/tbl_normativa/SAN_DCA_U00386_13_11_2014.pdf. Accessed 28 Sep 2018
  22. 22.
    Thompson AJ, Banwell BL, Barkhof F et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17:162–173CrossRefGoogle Scholar
  23. 23.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). Neurology 1983(33):1444–1452CrossRefGoogle Scholar
  24. 24.
    Trojano M, Pellegrini F, Paolicelli D, Fuiani A, Di Renzo V (2009) Observational studies: propensity score analysis of non-randomized data. Int MS J 16:90–97Google Scholar
  25. 25.
    Rassen JA, Solomon DH, Glynn RJ, Schneeweiss S (2011) Simultaneously assessing intended and unintended treatment effects of multiple treatment options: a pragmatic ‘‘matrix design’’. Pharmacoepidemiol Drug Saf 20:675–683CrossRefGoogle Scholar
  26. 26.
    Austin PC (2009) Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med 28:3083–3107CrossRefGoogle Scholar
  27. 27.
    Cummings P, McKnight B, Greenland S (2003) Matched cohort methods for injury research. Epidemiol Rev 25:43–50CrossRefGoogle Scholar
  28. 28.
    Greenland S (1996) Basic methods for sensitivity analysis of biases. Int J Epidemiol 25:1107–1116CrossRefGoogle Scholar
  29. 29.
    Girouard N, Soucy N (2011) Patient considerations in the management of multiple sclerosis: development and clinical utility of oral agents. Patient Prefer Adherence 5:101–108PubMedPubMedCentralGoogle Scholar
  30. 30.
    Verdugo RM, Herráiz ER, Fernández-Del Olmo R, Bonet MR, García MV (2019) Adherence to disease-modifying treatments in patients with multiple sclerosis in Spain. Patient Prefer Adherence 13:261–272CrossRefGoogle Scholar
  31. 31.
    Hendin BA (2018) Peg-interferon beta-1a for the treatment of relapsing multiple sclerosis: a case series. Mult Scler Relat Disord 26:33–36CrossRefGoogle Scholar
  32. 32.
    Duquette P, Yeung M, Mouallif S et al (2019) A retrospective claims analysis: compliance and discontinuation rates among Canadian patients with multiple sclerosis treated with disease-modifying therapies. PLoS ONE 14:e0210417CrossRefGoogle Scholar
  33. 33.
    D’Amico E, Zanghì A, Callari G et al (2018) Comparable efficacy and safety of dimethyl fumarate and teriflunomide treatment in Relapsing-Remitting Multiple Sclerosis: an Italian real-word multicenter experience. Ther Adv Neurol Disord. 10(11):1756286418796404Google Scholar
  34. 34.
    D’Amico E, Zanghì A, Sciandra M et al (2019) Discontinuation of teriflunomide and dimethyl fumarate in a large Italian multicentre population: a 24-month real-world experience. J Neurol 266:411–416CrossRefGoogle Scholar
  35. 35.
    Kalincik T, Havrdova E, Horakova D et al (2019) Comparison of fingolimod, dimethyl fumarate and teriflunomide for multiple sclerosis. J Neurol Neurosurg Psychiatry 90:458–468CrossRefGoogle Scholar
  36. 36.
    Laplaud DA, Casey R, Barbin L, SFSEP and OFSEP groups et al (2019) Comparative effectiveness of teriflunomide vs dimethyl fumarate in multiple sclerosis. Neurology.  https://doi.org/10.1212/WNL.0000000000007938 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kalincik T, Sormani MP (2017) Reporting treatment outcomes in observational data: a fine balance. Mult Scler 23:21–22CrossRefGoogle Scholar
  38. 38.
    Rosenbaum PR, Rubin DB (1985) Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am Stat 39:33–38Google Scholar
  39. 39.
    Austin PC, Grootendorst P, Anderson GM (2007) A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Stat Med 26:734–753CrossRefGoogle Scholar
  40. 40.
    Bergstra SA, Sepriano A, Ramiro S, Landewé R (2019) Three handy tips and a practical guide to improve your propensity score models. RMD Open 5:e000953CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Luca Prosperini
    • 1
    Email author
  • Antonio Cortese
    • 2
    • 3
  • Matteo Lucchini
    • 4
    • 5
  • Laura Boffa
    • 6
  • Giovanna Borriello
    • 7
  • Maria Chiara Buscarinu
    • 8
  • Fioravante Capone
    • 9
    • 10
  • Diego Centonze
    • 11
    • 12
  • Chiara De Fino
    • 4
  • Daniela De Pascalis
    • 13
  • Roberta Fantozzi
    • 11
  • Elisabetta Ferraro
    • 2
  • Maria Filippi
    • 14
  • Simonetta Galgani
    • 1
  • Claudio Gasperini
    • 1
  • Shalom Haggiag
    • 1
  • Doriana Landi
    • 6
  • Girolama Marfia
    • 6
    • 11
  • Giorgia Mataluni
    • 6
  • Enrico Millefiorini
    • 3
  • Massimiliano Mirabella
    • 4
    • 5
  • Fabrizia Monteleone
    • 6
  • Viviana Nociti
    • 4
    • 5
  • Simona Pontecorvo
    • 3
    • 15
  • Silvia Romano
    • 8
  • Serena Ruggieri
    • 1
    • 3
  • Marco Salvetti
    • 8
    • 11
  • Carla Tortorella
    • 1
  • Silvana Zannino
    • 16
  • Giancarlo Di Battista
    • 2
  1. 1.Department of NeurosciencesS. Camillo-Forlanini HospitalRomeItaly
  2. 2.San Filippo Neri HospitalASL Roma 1RomeItaly
  3. 3.Department of Human NeurosciencesSapienza UniversityRomeItaly
  4. 4.Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCSRomeItaly
  5. 5.Università Cattolica del Sacro CuoreRomeItaly
  6. 6.MS Clinical and Research Unit, Department of Systems MedicineTor Vergata UniversityRomeItaly
  7. 7.MS CentreS. Andrea HospitalRomeItaly
  8. 8.Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), S. Andrea HospitalSapienza UniversityRomeItaly
  9. 9.Unit of Neurology Neurophysiology, Department of MedicineCampus Bio-Medico UniversityRomeItaly
  10. 10.NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research UnitCampus Bio-Medico UniversityRomeItaly
  11. 11.IRCCS NeuromedPozzilliItaly
  12. 12.Laboratory of Synaptic Immunopathology, Department of Systems MedicineTor Vergata UniversityRomeItaly
  13. 13.Neurology Unit/Stroke Unit, Department of Emergency, MS CentreS. Eugenio HospitalRomeItaly
  14. 14.Fatebenefratelli Foundation for Health Research and Education, AFaR DivisionRomeItaly
  15. 15.Neurology Unit/Stroke UnitS. Giovanni Addolorata HospitalRomeItaly
  16. 16.Department of Clinical Experimental OncologyIRCCS Regina Elena National Cancer InstituteRomeItaly

Personalised recommendations