Advertisement

Journal of Neurology

, Volume 267, Issue 1, pp 138–143 | Cite as

Chemosensory decrease in different forms of olfactory dysfunction

  • Chloé Migneault-Bouchard
  • Julien Wen Hsieh
  • Marianne Hugentobler
  • Johannes Frasnelli
  • Basile Nicolas LandisEmail author
Original Communication

Abstract

The aim of this study is to investigate the effect of olfactory dysfunction (OD) on the two other chemical senses, namely gustation and the intranasal trigeminal system. Taste and trigeminal function were analyzed in a retrospective cross-sectional study of 178 participants with OD (n = 78 posttraumatic, n = 42 idiopathic, n = 27 post-infectious and n = 31 chronic rhinosinusitis (CRS) OD). All patients had been investigated for OD at our smell and taste outpatient clinic. Evaluation of olfaction was performed by means of the Sniffin’ Sticks test (odor threshold, odor discrimination and odor identification), whereas gustatory function was assessed with the Taste Strips test and the intranasal trigeminal sensitivity by means of the lateralization task. The degree of olfactory impairment was found to depend on the cause of OD, but not on patients’ age. Patients with posttraumatic OD showed lower olfactory function than patients with idiopathic, post-infectious and CRS OD (p = 0.01). Gustatory and trigeminal sensitivity in turn depended on age rather than the cause of olfactory dysfunction. Partial correlations between olfactory, gustatory, and trigeminal scores, with age as covariate, were significant, showing a decrease of taste and trigeminal function proportional to the OD (p < 0.05). The present data suggest that the three chemical senses are closely connected for humans underlining that in case of OD the remaining chemical senses (taste, trigeminal function) tend to decrease rather than compensate as this is seen for sensory loss in other modalities. This finding has direct clinical implications and importance when dealing with smell and taste disorders.

Keywords

Olfactory Gustatory Trigeminal Chemosensory interaction Chemical senses 

Notes

Acknowledgements

This study was supported by Mitacs Globalink scholarship (CMB, IT13349), the Fonds de Recherche du Québec – Santé (JF), the Natural Sciences and Engineering Research Council of Canada (JF), and the Chaire de Recherche UQTR en Neuroanatomie Chimiosensorielle (JF). BNL was supported by a grant of the Foundation AURIS (https://fondationauris.org).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Betchen SA, Doty RL (1998) Bilateral detection thresholds in dextrals and sinistrals reflect the more sensitive side of the nose, which is not lateralized. Chem Sens 23:453–457CrossRefGoogle Scholar
  2. 2.
    Cain WS (1974) Contribution of the trigeminal nerve to perceived odor magnitude. Ann N Y Acad Sci 237:28–34CrossRefGoogle Scholar
  3. 3.
    Cain WS, Murphy CL (1980) Interaction between chemoreceptive modalities of odour and irritation. Nature 284:255–257CrossRefGoogle Scholar
  4. 4.
    Cecchini MP, Cardobi N, Sbarbati A, Monaco S, Tinazzi M, Tamburin S (2018) Post-traumatic taste disorders: a case series. J Neurol 265:836–844CrossRefGoogle Scholar
  5. 5.
    Cecchini MP, Fasano A, Boschi F, Osculati F, Tinazzi M (2015) Taste in Parkinson's disease. J Neurol 262:806–813CrossRefGoogle Scholar
  6. 6.
    Daiber P, Genovese F, Schriever VA, Hummel T, Mohrlen F, Frings S (2013) Neuropeptide receptors provide a signalling pathway for trigeminal modulation of olfactory transduction. Eur J Neurosci 37:572–582CrossRefGoogle Scholar
  7. 7.
    Dalton P, Doolittle N, Nagata H, Breslin PA (2000) The merging of the senses: integration of subthreshold taste and smell. Nat Neurosci 3:431–432CrossRefGoogle Scholar
  8. 8.
    de Guise E, Gosselin N, Leblanc J, Champoux MC, Couturier C, Lamoureux J, Dagher J, Marcoux J, Maleki M, Feyz M (2011) Clock drawing and mini-mental state examination in patients with traumatic brain injury. Appl Neuropsychol 18:179–190CrossRefGoogle Scholar
  9. 9.
    Deems DA, Doty RL, Settle RG, Moore-Gillon V, Shaman P, Mester AF, Kimmelman CP, Brightman VJ, Snow JB Jr (1991) Smell and taste disorders, a study of 750 patients from the University of Pennsylvania Smell and Taste Center. Arch Otolaryngol Head Neck Surg 117:519–528CrossRefGoogle Scholar
  10. 10.
    Frasnelli J, Livermore A, Soiffer A, Hummel T (2002) Comparison of lateralized and binasal olfactory thresholds. Rhinology 40:129–134PubMedGoogle Scholar
  11. 11.
    Frasnelli J, Schuster B, Hummel T (2007) Subjects with congenital anosmia have larger peripheral but similar central trigeminal responses. Cereb Cortex 17:370–377CrossRefGoogle Scholar
  12. 12.
    Gudziol H, Schubert M, Hummel T (2001) Decreased trigeminal sensitivity in anosmia. ORL J Otorhinolaryngol Relat Spec 63:72–75CrossRefGoogle Scholar
  13. 13.
    Hummel T, Barz S, Lotsch J, Roscher S, Kettenmann B, Kobal G (1996) Loss of olfactory function leads to a decrease of trigeminal sensitivity. Chem Sens 21:75–79CrossRefGoogle Scholar
  14. 14.
    Hummel T, Futschik T, Frasnelli J, Huttenbrink KB (2003) Effects of olfactory function, age, and gender on trigeminally mediated sensations: a study based on the lateralization of chemosensory stimuli. Toxicol Lett 140–141:273–280CrossRefGoogle Scholar
  15. 15.
    Hummel T, Landis BN, Huttenbrink KB (2011) Smell and taste disorders. GMS Curr Top Otorhinolaryngol Head Neck Surg 10:Doc04Google Scholar
  16. 16.
    Hummel T, Whitcroft KL, Andrews P, Altundag A, Cinghi C, Costanzo RM, Damm M, Frasnelli J, Gudziol H, Gupta N, Haehner A, Holbrook E, Hong SC, Hornung D, Huttenbrink KB, Kamel R, Kobayashi M, Konstantinidis I, Landis BN, Leopold DA, Macchi A, Miwa T, Moesges R, Mullol J, Mueller CA, Ottaviano G, Passali GC, Philpott C, Pinto JM, Ramakrishnan VJ, Rombaux P, Roth Y, Schlosser RA, Shu B, Soler G, Stjarne P, Stuck BA, Vodicka J, Welge-Luessen A (2017) Position paper on olfactory dysfunction. Rhinology 54:1–30PubMedGoogle Scholar
  17. 17.
    Kobal G, Hummel C (1988) Cerebral chemosensory evoked potentials elicited by chemical stimulation of the human olfactory and respiratory nasal mucosa. Electroencephalogr Clin Neurophysiol 71:241–250CrossRefGoogle Scholar
  18. 18.
    Konstantinidis I, Tsakiropoulou E, Chatziavramidis A, Ikonomidis C, Markou K (2017) Intranasal trigeminal function in patients with empty nose syndrome. Laryngoscope 127:1263–1267CrossRefGoogle Scholar
  19. 19.
    Landis BN, Hummel T, Hugentobler M, Giger R, Lacroix JS (2003) Ratings of overall olfactory function. Chem Sens 28:691–694CrossRefGoogle Scholar
  20. 20.
    Landis BN, Konnerth CG, Hummel T (2004) A Study on the Frequency of Olfactory Dysfunction. Laryngoscope 114:1764–1769CrossRefGoogle Scholar
  21. 21.
    Landis BN, Scheibe M, Weber C, Berger R, Bramerson A, Bende M, Nordin S, Hummel T (2010) Chemosensory interaction: acquired olfactory impairment is associated with decreased taste function. J Neurol 257:1303–1308CrossRefGoogle Scholar
  22. 22.
    Landis BN, Stow NW, Lacroix JS, Hugentobler M, Hummel T (2009) Olfactory disorders: the patients' view. Rhinology 47:454–459PubMedGoogle Scholar
  23. 23.
    Landis BN, Welge-Luessen A, Bramerson A, Bende M, Mueller CA, Nordin S, Hummel T (2009) "Taste Strips"—a rapid, lateralized, gustatory bedside identification test based on impregnated filter papers. J Neurol 256:242–248CrossRefGoogle Scholar
  24. 24.
    Laska M, Distel H, Hudson R (1997) Trigeminal perception of odorant quality in congenitally anosmic subjects. Chem Sens 22:447–456CrossRefGoogle Scholar
  25. 25.
    Lundstrom JN, Gordon AR, Wise P, Frasnelli J (2012) Individual differences in the chemical senses: is there a common sensitivity? Chem Sens 37:371–378CrossRefGoogle Scholar
  26. 26.
    Oleszkiewicz A, Schriever VA, Croy I, Hahner A, Hummel T (2019) Updated Sniffin' Sticks normative data based on an extended sample of 9139 subjects. Eur Arch Otorhinolaryngol 276:719–728CrossRefGoogle Scholar
  27. 27.
    Pence TS, Reiter ER, DiNardo LJ, Costanzo RM (2014) Risk factors for hazardous events in olfactory-impaired patients. JAMA Otolaryngol Head Neck Surg 140:951–955CrossRefGoogle Scholar
  28. 28.
    Rolls ET (2005) Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiol Behav 85:45–56CrossRefGoogle Scholar
  29. 29.
    Schaefer ML, Bottger B, Silver WL, Finger TE (2002) Trigeminal collaterals in the nasal epithelium and olfactory bulb: a potential route for direct modulation of olfactory information by trigeminal stimuli. J Comp Neurol 444:221–226CrossRefGoogle Scholar
  30. 30.
    Schriever VA, Hummel T (2015) Subjective changes in nasal patency after chewing a menthol-containing gum in patients with olfactory loss. Acta Otolaryngol 135:254–257CrossRefGoogle Scholar
  31. 31.
    Simon HJ, Levitt H (2007) Effect of dual sensory loss on auditory localization: implications for intervention. Trends Amplif 11:259–272CrossRefGoogle Scholar
  32. 32.
    Stinton N, Atif MA, Barkat N, Doty RL (2010) Influence of smell loss on taste function. Behav Neurosci 124:256–264CrossRefGoogle Scholar
  33. 33.
    Tremblay C, Durand Martel P, Frasnelli J (2018) Chemosensory perception is specifically impaired in Parkinson's disease. Parkinsonism Relat Disord 57:68–71CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Chair in Chemosensory Neuroanatomy, Department of AnatomyUniversité du Québec à Trois-Rivières (UQTR)Trois-RivièresCanada
  2. 2.Department of Clinical NeuroscienceGeneva University Hospitals (HUG)GenevaSwitzerland
  3. 3.Rhinology-Olfactology Unit, Department of Otorhinolaryngology, Head and Neck SurgeryGeneva University Hospitals (HUG)GenevaSwitzerland
  4. 4.Research Center of the Sacré-Coeur HospitalMontrealCanada

Personalised recommendations