Advertisement

Journal of Neurology

, Volume 266, Issue 8, pp 1919–1926 | Cite as

Multi-gene testing in neurological disorders showed an improved diagnostic yield: data from over 1000 Indian patients

  • Aparna Ganapathy
  • Avshesh Mishra
  • Megha Rani Soni
  • Priyanka Kumar
  • Mukunth Sadagopan
  • Anil Vittal Kanthi
  • Irene Rosetta Pia Patric
  • Sobha George
  • Aparajit Sridharan
  • T. C. Thyagarajan
  • S. L. Aswathy
  • H. K. Vidya
  • Swathi M. Chinnappa
  • Swetha Nayanala
  • Manasa B. Prakash
  • Vijayashree G. Raghavendrachar
  • Minothi Parulekar
  • Vykuntaraju K. Gowda
  • Sheela Nampoothiri
  • Ramshekhar N. Menon
  • Divya Pachat
  • Vrajesh Udani
  • Neeta Naik
  • Mahesh Kamate
  • A. Radha Rama Devi
  • P. A. Mohammed Kunju
  • Mohandas Nair
  • Anaita Udwadia Hegde
  • M. Pradeep Kumar
  • Soumya Sundaram
  • Preetha Tilak
  • Ratna D. Puri
  • Krati Shah
  • Jayesh Sheth
  • Qurratulain Hasan
  • Frenny Sheth
  • Pooja Agrawal
  • Shanmukh Katragadda
  • Vamsi Veeramachaneni
  • Vijay Chandru
  • Ramesh Hariharan
  • Ashraf U. MannanEmail author
Original Communication

Abstract

Background

Neurological disorders are clinically heterogeneous group of disorders and are major causes of disability and death. Several of these disorders are caused due to genetic aberration. A precise and confirmatory diagnosis in the patients in a timely manner is essential for appropriate therapeutic and management strategies. Due to the complexity of the clinical presentations across various neurological disorders, arriving at an accurate diagnosis remains a challenge.

Methods

We sequenced 1012 unrelated patients from India with suspected neurological disorders, using TruSight One panel. Genetic variations were identified using the Strand NGS software and interpreted using the StrandOmics platform.

Results

We were able to detect mutations in 197 genes in 405 (40%) cases and 178 mutations were novel. The highest diagnostic rate was observed among patients with muscular dystrophy (64%) followed by leukodystrophy and ataxia (43%, each). In our cohort, 26% of the patients who received definitive diagnosis were primarily referred with complex neurological phenotypes with no suggestive diagnosis. In terms of mutations types, 62.8% were truncating and in addition, 13.4% were structural variants, which are also likely to cause loss of function.

Conclusion

In our study, we observed an improved performance of multi-gene panel testing, with an overall diagnostic yield of 40%. Furthermore, we show that NGS (next-generation sequencing)-based testing is comprehensive and can detect all types of variants including structural variants. It can be considered as a single-platform genetic test for neurological disorders that can provide a swift and definitive diagnosis in a cost-effective manner.

Keywords

Neurological disorders Genetic testing Next-generation sequencing Multi-gene panel 

Notes

Acknowledgements

We thank the patients and families, who consented to participate in this study. We thank all the physicians, who referred the patients to our centre. We also thank the Strand Life Sciences laboratory, bioinformatics, interpretation and genetic counselling staff for providing the infrastructure needed for this study.

Author contributions

AG—acquisition of data, analysis of data, interpretation and critical review of data, drafting of manuscript. AV, MRS—acquisition of data, analysis of data, interpretation of data, making of figures. PK, MS, AVK, IRPP, SG, AS, TTC, ASL, VHK, SMC—acquisition of data, interpretation of data. VR, SN, RM, DP, VU, NN, MK, ARRD, MK, SJ, MN, AUH, MPP, SS, PT, RP, AH, KS, JS—acquisition of data and concept of the study. PA—acquisition of data, sequencing. SK, VV—analysis and validation. AM, AG—conception and design of study, analysis of data, interpretation and critical review of data, drafting of manuscript. AM, VC, RH—critical inputs and finalization of the manuscript. All authors contributed in preparation of the manuscript, read and approved the final manuscript.

Funding

For this study, funding was not obtained from any funding body; therefore, there is no role of any funding body in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Compliance with ethical standards

Conflicts of interest

AG, AV, MRS, PK, MS, AVK, IRPP, SG, AS, TTC, ASL, VHK, SMC, SN, MBP, VGR, MP, PA, SK, VV, VC, RH, AM are employees of Strand Life Sciences that offer commercially available clinical genetic testing services.

Ethical standards

Sequencing of patient samples used in the study has been approved by Institutional Ethics Committee of Strand Life Sciences.

Informed consent

Informed consent was obtained in writing from all subjects and sequencing of patient samples was approved by Institutional Ethics Committee of Strand Life Sciences.

Supplementary material

415_2019_9358_MOESM1_ESM.docx (29 kb)
Supplementary file1 (DOCX 28 kb)
415_2019_9358_MOESM2_ESM.docx (448 kb)
Supplementary file2 (DOCX 448 kb)
415_2019_9358_MOESM3_ESM.docx (13 kb)
Supplementary file3 (DOCX 13 kb)

References

  1. 1.
    Gourie-Devi M (2014) Epidemiology of neurological disorders in India: review of background, prevalence and incidence of epilepsy, stroke, Parkinson′s disease and tremors. Neurol India 62:588.  https://doi.org/10.4103/0028-3886.149365 CrossRefGoogle Scholar
  2. 2.
    Deenen JCW, Horlings CGC, Verschuuren JJGM et al (2015) The epidemiology of neuromuscular disorders: a comprehensive overview of the literature. J Neuromuscul Dis 2:73–85.  https://doi.org/10.3233/JND-140045 CrossRefGoogle Scholar
  3. 3.
    Biskup S, Gasser T (2012) Genetic testing in neurological diseases. J Neurol 259:1249–1254.  https://doi.org/10.1007/s00415-012-6511-9 CrossRefGoogle Scholar
  4. 4.
    Vissers LELM, Van Nimwegen KJM, Schieving JH et al (2017) A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology. Genet Med 19:1055–1063.  https://doi.org/10.1038/gim.2017.1 CrossRefGoogle Scholar
  5. 5.
    Muzzey D, Evans EA, Lieber C (2015) Understanding the basics of NGS: from mechanism to variant calling. Curr Genet Med Rep 3:158–165.  https://doi.org/10.1007/s40142-015-0076-8 CrossRefGoogle Scholar
  6. 6.
    Xue Y, Ankala A, Wilcox WR, Hegde MR (2015) Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med 17:444–451.  https://doi.org/10.1038/gim.2014.122 CrossRefGoogle Scholar
  7. 7.
    Strom SP, Lee H, Das K et al (2014) Assessing the necessity of confirmatory testing for exome-sequencing results in a clinical molecular diagnostic laboratory. Genet Med 16:510–515.  https://doi.org/10.1038/gim.2013.183 CrossRefGoogle Scholar
  8. 8.
    Katsanis SH, Katsanis N (2016) Molecular genetic testing and the future of clinical genomics. Genomic Precis Med Found Transl Implement Third Ed 14:263–282.  https://doi.org/10.1016/B978-0-12-800681-8.00018-9 Google Scholar
  9. 9.
    Bhattacharya S, Khadilkar SV, Nalini A et al (2018) Mutation spectrum of GNE myopathy in the Indian sub-continent. J Neuromuscul Dis 5:85–92.  https://doi.org/10.3233/JND-170270 CrossRefGoogle Scholar
  10. 10.
    Kapoor S, Shah MH, Singh N et al (2016) Genetic analysis of PLA2G6 in 22 Indian families with infantile neuroaxonal dystrophy, atypical late-onset neuroaxonal dystrophy and dystonia parkinsonism complex. PLoS ONE 11:1–12.  https://doi.org/10.1371/journal.pone.0155605 CrossRefGoogle Scholar
  11. 11.
    Bidchol AM, Dalal A, Trivedi R et al (2015) Recurrent and novel GLB1 mutations in India. Gene 567:173–181.  https://doi.org/10.1016/j.gene.2015.04.078 CrossRefGoogle Scholar
  12. 12.
    Deepha S, Vengalil S, Preethish-Kumar V et al (2017) MLPA identification of dystrophin mutations and in silico evaluation of the predicted protein in dystrophinopathy cases from India. BMC Med Genet 18:1.  https://doi.org/10.1186/s12881-017-0431-6 CrossRefGoogle Scholar
  13. 13.
    Giri S, Naiya T, Equbal Z et al (2017) Genetic screening of THAP1 in primary dystonia patients of India. Neurosci Lett 637:31–37.  https://doi.org/10.1016/j.neulet.2016.11.060 CrossRefGoogle Scholar
  14. 14.
    Raju PK, Satishchandra P, Nayak S et al (2017) Microtubule-associated defects caused by EFHC1 mutations in juvenile myoclonic epilepsy. Hum Mutat 38:816–826.  https://doi.org/10.1002/humu.23221 CrossRefGoogle Scholar
  15. 15.
    Mannan AU, Singh J, Lakshmikeshava R et al (2016) Detection of high frequency of mutations in a breast and/or ovarian cancer cohort: implications of embracing a multi-gene panel in molecular diagnosis in India. J Hum Genet 61:515–522.  https://doi.org/10.1038/jhg.2016.4 CrossRefGoogle Scholar
  16. 16.
    Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424.  https://doi.org/10.1038/gim.2015.30 CrossRefGoogle Scholar
  17. 17.
    Singh J, Mishra A, Pandian AJ et al (2016) Next-generation sequencing-based method shows increased mutation detection sensitivity in an Indian retinoblastoma cohort. Mol Vis 22:1036–1047Google Scholar
  18. 18.
    Singh J, Thota N, Singh S et al (2018) Screening of over 1000 Indian patients with breast and/or ovarian cancer with a multi-gene panel: prevalence of BRCA1/2 and non-BRCA mutations. Breast Cancer Res Treat 170:189–196.  https://doi.org/10.1007/s10549-018-4726-x CrossRefGoogle Scholar
  19. 19.
    Mu W, Lu HM, Chen J et al (2016) Sanger confirmation is required to achieve optimal sensitivity and specificity in next-generation sequencing panel testing. J Mol Diagnostics 18:923–932.  https://doi.org/10.1016/j.jmoldx.2016.07.006 CrossRefGoogle Scholar
  20. 20.
    Baudhuin LM, Lagerstedt SA, Klee EW et al (2015) Confirming variants in next-generation sequencing panel testing by sanger sequencing. J Mol Diagnostics 17:456–461.  https://doi.org/10.1016/j.jmoldx.2015.03.004 CrossRefGoogle Scholar
  21. 21.
    Farwell KD, Shahmirzadi L, El-Khechen D et al (2015) Enhanced utility of family-centered diagnostic exome sequencing with inheritance model-based analysis: results from 500 unselected families with undiagnosed genetic conditions. Genet Med 17:578–586.  https://doi.org/10.1038/gim.2014.154 CrossRefGoogle Scholar
  22. 22.
    Lee H, Deignan JL, Dorrani N et al (2014) Clinical exome sequencing for genetic identification of rare mendelian disorders. JAMA J Am Med Assoc 312:1880–1887.  https://doi.org/10.1001/jama.2014.14604 CrossRefGoogle Scholar
  23. 23.
    Retterer K, Juusola J, Cho MT et al (2016) Clinical application of whole-exome sequencing across clinical indications. Genet Med 18:696–704.  https://doi.org/10.1038/gim.2015.148 CrossRefGoogle Scholar
  24. 24.
    Trujillano D, Bertoli-Avella AM, Kumar Kandaswamy K et al (2017) Clinical exome sequencing: results from 2819 samples reflecting 1000 families. Eur J Hum Genet 25:176–182.  https://doi.org/10.1038/ejhg.2016.146 CrossRefGoogle Scholar
  25. 25.
    Yang Y, Muzny DM, Xia F et al (2015) NIH Public Access. JAMA 312:1870–1879.  https://doi.org/10.1001/jama.2014.14601.Molecular CrossRefGoogle Scholar
  26. 26.
    Lindy AS, Stosser MB, Butler E et al (2018) Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders. Epilepsia 59:1062–1071.  https://doi.org/10.1111/epi.14074 CrossRefGoogle Scholar
  27. 27.
    Carvill GL, Heavin SB, Yendle SC et al (2013) HHS Public Access. Nat Genet 45:825–830.  https://doi.org/10.1038/ng.2646.Targeted CrossRefGoogle Scholar
  28. 28.
    Trump N, McTague A, Brittain H et al (2016) Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis. J Med Genet 53:310–317.  https://doi.org/10.1136/jmedgenet-2015-103263 CrossRefGoogle Scholar
  29. 29.
    Kang C, Liang C, Ahmad KE et al (2019) High degree of genetic heterogeneity for hereditary cerebellar ataxias in Australia. Cerebellum 18:137–146.  https://doi.org/10.1007/s12311-018-0969-7 CrossRefGoogle Scholar
  30. 30.
    Hadjivassiliou M, Martindale J, Shanmugarajah P et al (2017) Causes of progressive cerebellar ataxia: prospective evaluation of 1500 patients. J Neurol Neurosurg Psychiatry 88:301–309.  https://doi.org/10.1136/jnnp-2016-314863 CrossRefGoogle Scholar
  31. 31.
    Savarese M, Di Fruscio G, Magri F et al (2016) The genetic basis of undiagnosed muscular dystrophies and myopathies: results from 504 patients. Neurology.  https://doi.org/10.1212/WNL.0000000000002800 Google Scholar
  32. 32.
    Miller DT, Adam MP, Aradhya S et al (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86:749–764.  https://doi.org/10.1016/j.ajhg.2010.04.006 CrossRefGoogle Scholar
  33. 33.
    Truty R, Paul J, Kennemer M et al (2018) Prevalence and properties of intragenic copy-number variation in Mendelian disease genes. Genet Med.  https://doi.org/10.1038/s41436-018-0033-5 Google Scholar
  34. 34.
    Okubo M, Minami N, Goto K et al (2016) Genetic diagnosis of Duchenne/Becker muscular dystrophy using next-generation sequencing: validation analysis of DMD mutations. J Hum Genet 61:483–489.  https://doi.org/10.1038/jhg.2016.7 CrossRefGoogle Scholar
  35. 35.
    Bowling KM, Thompson ML, Amaral MD et al (2017) Genomic diagnosis for children with intellectual disability and/or developmental delay. Genome Med 9:1–11.  https://doi.org/10.1186/s13073-017-0433-1 CrossRefGoogle Scholar
  36. 36.
    Hamdan FF, Myers CT, Cossette P et al (2017) High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. Am J Hum Genet 101:664–685.  https://doi.org/10.1016/j.ajhg.2017.09.008 CrossRefGoogle Scholar
  37. 37.
    Stavropoulos DJ, Merico D, Jobling R et al (2016) Whole-genome sequencing expands diagnostic utility and improves clinical management in paediatric medicine. NPJ Genomic Med.  https://doi.org/10.1038/npjgenmed.2015.12 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Aparna Ganapathy
    • 1
  • Avshesh Mishra
    • 1
  • Megha Rani Soni
    • 1
  • Priyanka Kumar
    • 1
  • Mukunth Sadagopan
    • 1
  • Anil Vittal Kanthi
    • 1
  • Irene Rosetta Pia Patric
    • 1
  • Sobha George
    • 1
  • Aparajit Sridharan
    • 1
  • T. C. Thyagarajan
    • 1
  • S. L. Aswathy
    • 1
  • H. K. Vidya
    • 1
  • Swathi M. Chinnappa
    • 1
  • Swetha Nayanala
    • 1
  • Manasa B. Prakash
    • 1
  • Vijayashree G. Raghavendrachar
    • 1
  • Minothi Parulekar
    • 1
  • Vykuntaraju K. Gowda
    • 2
  • Sheela Nampoothiri
    • 3
  • Ramshekhar N. Menon
    • 4
  • Divya Pachat
    • 5
  • Vrajesh Udani
    • 6
  • Neeta Naik
    • 7
  • Mahesh Kamate
    • 8
  • A. Radha Rama Devi
    • 9
  • P. A. Mohammed Kunju
    • 10
  • Mohandas Nair
    • 11
  • Anaita Udwadia Hegde
    • 12
  • M. Pradeep Kumar
    • 13
  • Soumya Sundaram
    • 4
  • Preetha Tilak
    • 14
  • Ratna D. Puri
    • 15
  • Krati Shah
    • 16
  • Jayesh Sheth
    • 17
  • Qurratulain Hasan
    • 18
  • Frenny Sheth
    • 17
  • Pooja Agrawal
    • 1
  • Shanmukh Katragadda
    • 1
  • Vamsi Veeramachaneni
    • 1
  • Vijay Chandru
    • 1
    • 19
  • Ramesh Hariharan
    • 1
    • 19
  • Ashraf U. Mannan
    • 1
    Email author
  1. 1.Strand Center for Genomics and Personalized MedicineStrand Life SciencesBangaloreIndia
  2. 2.Indira Gandhi Institute of Child HealthBangaloreIndia
  3. 3.Amrita Institute of Medical Sciences and Research CentreCochinIndia
  4. 4.Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
  5. 5.Aster MIMSKozhikodeIndia
  6. 6.P. D. Hinduja Hospital and Medical Research CentreMumbaiIndia
  7. 7.EN1 Neuro Services Pvt. Ltd.MumbaiIndia
  8. 8.KLES Dr. Prabhakar Kore HospitalBelgaumIndia
  9. 9.Rainbow Children’s HospitalHyderabadIndia
  10. 10.SAT HospitalThiruvananthapuramIndia
  11. 11.Goverment Medical CollegeKozhikodeIndia
  12. 12.SRCC Children’s HospitalMumbaiIndia
  13. 13.GeneOmm Medical CentreCoimbatoreIndia
  14. 14.St. Johns Medical College HospitalBangaloreIndia
  15. 15.Sir Ganga Ram HospitalDelhiIndia
  16. 16.ONE-Centre for Rheumatology and GeneticsVadodaraIndia
  17. 17.FRIGE’S Institute of Human GeneticsAhmedabadIndia
  18. 18.Kamineni HospitalsHyderabadIndia
  19. 19.Indian Institute of ScienceBangaloreIndia

Personalised recommendations