Advertisement

In search of distinct MS-related fatigue subtypes: results from a multi-cohort analysis in 1.403 MS patients

  • Gesa E. A. Pust
  • Jana Pöttgen
  • Jennifer Randerath
  • Stephanie Lau
  • Christoph Heesen
  • Stefan M. Gold
  • Iris-Katharina PennerEmail author
Original Communication

Abstract

Fatigue is among the most disabling symptoms in patients with multiple sclerosis (PwMS). The common distinction between cognitive and motor fatigue is typically incorporated in self-rating instruments, such as the Chalder Fatigue Questionnaire (CFQ), the Fatigue Scale for Motor and Cognitive Functions (FSMC) or the Modified Fatigue Impact Scale (MFIS). The present study investigated the factor structure of the CFQ, the FSMC and the MFIS utilizing exploratory (EFA) and confirmatory factor analysis (CFA) as well as exploratory structural equation modeling (ESEM). Data of 1.403 PwMS were analyzed, utilizing four samples. The first sample (N = 605) was assessed online and split into two stratified halves to perform EFA, CFA, and ESEM on the CFQ and FSMC. The second sample (N = 293) was another online sample. It served to calculate CFA and ESEM on the CFQ and FSMC. The third sample was gathered in a clinical setting (N = 196) and analyzed by applying CFA and ESEM to the FSMC. The fourth sample (N = 309) was assessed in a clinical setting and allowed to run a CFA and ESEM on the MFIS. Proposed factor structures of all questionnaires were largely confirmed in EFA. However, none of the calculated CFAs and ESEMs could verify the proposed factor structures of the three measures, even with oblique rotation techniques. The findings might have implications for future research into the pathophysiological basis of MS-related fatigue and could affect the suitability of such measures as outcomes for treatment trials, presumably targeting specific sub-components of fatigue.

Keywords

Fatigue Assessment Validation Multiple sclerosis 

Notes

Acknowledgements

We thank Lena Katharina Feddersen for support with data collection.

Compliance with ethical standards

Conflicts of interest

GEAP received speaker honoraria and project funding from Genzyme Sanofi. CH received speaker honoraria and project funding from Genzyme Sanofi, Roche, Merck, Biogen. SMG reports honoraria from Mylan GmbH, Almirall S. A. and Celgene and research grants from Biogen. IKP has received honoraria for speaking at scientific meetings, serving at scientific advisory boards and consulting activities from Adamas Pharma, Almirall, Bayer Pharma, Biogen, Celgene, Desitin, Genzyme, Merck, Novartis, Roche, and Teva. She has received research support from Teva, Novartis and the German MS Society. All remaining authors have no conflict of interest to declare.

Ethical standards

All studies were conducted in accordance with the 1964 Declaration of Helsinki and its later amendments and received ethical clearance.

Informed consent

All persons provided written informed consent prior to their inclusion in the study.

References

  1. 1.
    Penner IK, Paul F (2017) Fatigue as a symptom or comorbidity of neurological diseases. Nat Rev Neurol.  https://doi.org/10.1038/nrneurol.2017.117 Google Scholar
  2. 2.
    Barin L, Salmen A, Disanto G et al (2018) The disease burden of multiple sclerosis from the individual and population perspective: which symptoms matter most? Mult Scler Relat Disord.  https://doi.org/10.1016/j.msard.2018.07.013 Google Scholar
  3. 3.
    Gerhard L, Dorstyn DS, Murphy G, Roberts RM (2018) Neurological, physical and sociodemographic correlates of employment in multiple sclerosis: a meta-analysis. J Health Psychol.  https://doi.org/10.1177/1359105318755262 Google Scholar
  4. 4.
    Kobelt G, Thompson A, Berg J, Gannedahl M, Eriksson J, MSCOI Study Group, & European Multiple Sclerosis Platform (2017) New insights into the burden and costs of multiple sclerosis in Europe. Mult Scler J.  https://doi.org/10.1177/1352458517694432 Google Scholar
  5. 5.
    Vister E, Tijsma ME, Hoang PD, Lord SR (2017) Fatigue, physical activity, quality of life, and fall risk in people with multiple sclerosis. Int J MS Care.  https://doi.org/10.7224/1537-2073.2015-077 Google Scholar
  6. 6.
    Paucke M, Kern S, Ziemssen T (2018) Fatigue and sleep in multiple sclerosis patients: a comparison of self-report and performance-based measures. Front Neurol.  https://doi.org/10.3389/fneur.2017.00703 Google Scholar
  7. 7.
    Kos D, Kerckhofs E, Nagels G, D’hooghe MB, Ilsbroukx S (2008) Origin of fatigue in multiple sclerosis: review of the literature. Neurorehabilit Neural Repair.  https://doi.org/10.1177/1545968306298934 Google Scholar
  8. 8.
    Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD (1989) The fatigue severity scale: application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol.  https://doi.org/10.1001/archneur.1989.00520460115022 Google Scholar
  9. 9.
    Fisk JD, Pontefract A, Ritvo PG, Archibald CJ, Murray TJ (1994) The impact of fatigue on patients with multiple sclerosis. Can J Neurol Sci.  https://doi.org/10.1017/S0317167100048691 Google Scholar
  10. 10.
    Penner IK, Raselli C, Stöcklin M, Opwis K, Kappos L, Calabrese P (2009) The chalder fatigue questionnaire for motor and cognitive functions (FSMC): validation of a new instrument to assess multiple sclerosis-related fatigue. Mult Scler J.  https://doi.org/10.1177/1352458509348519 Google Scholar
  11. 11.
    Chalder T, Berelowitz G, Pawlikowska T, Watts L, Wessely S, Wright D, Wallace EP (1993) Development of a fatigue scale. J Psychosom Res.  https://doi.org/10.1016/0022-3999(93)90081-P Google Scholar
  12. 12.
    Fischer JS, LaRocca NG, Miller DM et al (1999) Recent developments in the assessment of quality of life in multiple sclerosis (MS). Mult Scler J.  https://doi.org/10.1177/135245859900500410 Google Scholar
  13. 13.
    Larson RD (2013) Psychometric properties of the modified fatigue impact scale. Int J MS Care.  https://doi.org/10.7224/1537-2073.2012-019 Google Scholar
  14. 14.
    Mills RJ, Young CA, Pallant JF, Tennant A (2010) Rasch analysis of the modified fatigue impact scale (MFIS) in multiple sclerosis. J Neurol Neurosurg Psychiatry.  https://doi.org/10.1136/jnnp.2008.151340 Google Scholar
  15. 15.
    Martin A, Staufenbiel T, Gaab J, Rief W, Brähler E (2010) Messung chronischer Erschöpfung-Teststatistische Prüfung der Fatigue Skala (FS). Zeitschrift für Klinische Psychologie und Psychotherapie.  https://doi.org/10.1026/1616-3443/a000010 Google Scholar
  16. 16.
    Chilcot J, Norton S, Kelly ME, Moss-Morris R (2016) The Chalder Fatigue Questionnaire is a valid and reliable measure of perceived fatigue severity in multiple sclerosis. Mult Scler J.  https://doi.org/10.1177/1352458515598019 Google Scholar
  17. 17.
    Picariello F, Moss-Morris R, Macdougall IC, Chilcot J (2016) Measuring fatigue in haemodialysis patients: the factor structure of the Chalder Fatigue Questionnaire (CFQ). J Psychosom Res.  https://doi.org/10.1016/j.jpsychores.2016.03.124 Google Scholar
  18. 18.
    Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol.  https://doi.org/10.1002/ana.22366 Google Scholar
  19. 19.
    Beaton DE, Bombardier C, Guillemin F, Ferraz MB (2000) Guidelines for the process of cross-cultural adaptation of self-report measures. Spine 25:3186–3191CrossRefGoogle Scholar
  20. 20.
    Herrmann C, Buss U, Snaith RP (1995) HADS-D hospital anxiety and depression scale—deutsche version. Verlag Hans Huber, BernGoogle Scholar
  21. 21.
    Petermann F (2011) Hospital anxiety and depression scale. Deutsche Version (HADS-D). Zeitschrift für Psychiatrie Psychologie und Psychotherapie.  https://doi.org/10.1024/1661-4747/a000077 Google Scholar
  22. 22.
    Hautzinger M, Keller F, Kühner C (2006) BDI-II beck depressions-inventar: revision. Harcourt Test Services, Frankfurt am MainGoogle Scholar
  23. 23.
    Hohol MJ, Orav EJ, Weiner HL (1995) Disease steps in multiple sclerosis. A simple approach to evaluate disease progression. Neurology.  https://doi.org/10.1212/WNL.45.2.251 Google Scholar
  24. 24.
    Learmonth YC, Motl RW, Sandroff BM, Pula JH, Cadavid D (2013) Validation of patient determined disease steps (PDDS) scale scores in persons with multiple sclerosis. BMC Neurol.  https://doi.org/10.1186/1471-2377-13-37 Google Scholar
  25. 25.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology.  https://doi.org/10.1212/WNL.33.11.1444 Google Scholar
  26. 26.
    Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, HillsdaleGoogle Scholar
  27. 27.
    Brown TA (2014) Confirmatory factor analysis for applied research. Guilford Publications, New YorkGoogle Scholar
  28. 28.
    Asparouhov T, Muthén B (2009) Exploratory structural equation modeling. Struct Equ Model Multidiscip J.  https://doi.org/10.1080/10705510903008204 Google Scholar
  29. 29.
    Marsh HW, Lüdtke O, Muthén B, Asparouhov T, Morin AJ, Trautwein U, Nagengast B (2010) A new look at the big five factor structure through exploratory structural equation modeling. Psychol Assess.  https://doi.org/10.1037/a0019227 Google Scholar
  30. 30.
    Marsh HW (2007) Application of confirmatory factor analysis and structural equation modeling in sport and exercise psychology. Handb Sport Psychol.  https://doi.org/10.1002/9781118270011.ch35 Google Scholar
  31. 31.
    Morin AJ, Marsh HW, Nagengast B (2013) Exploratory structural equation modeling. In: Hancock GR, Mueller RO (eds) Quantitative methods in education and the behavioral sciences: issues, research, and teaching. Structural equation modeling: a second course. IAP Information Age Publishing, Charlotte, pp 395–436Google Scholar
  32. 32.
    Byrne BM (2016) Structural equation modeling with Mplus: basic concepts, applications, and programming. Routledge, New YorkGoogle Scholar
  33. 33.
    Hu LT, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model Multidiscip J.  https://doi.org/10.1080/10705519909540118 Google Scholar
  34. 34.
    Claros-Salinas D, Bratzke D, Greitemann G, Nickisch N, Ochs L, Schröter H (2010) Fatigue-related diurnal variations of cognitive performance in multiple sclerosis and stroke patients. J Neurol Sci.  https://doi.org/10.1016/j.jns.2010.04.018 Google Scholar
  35. 35.
    Elbers RG, Rietberg MB, van Wegen EE, Verhoef J, Kramer SF, Terwee CB, Kwakkel G (2011) Self-report fatigue questionnaires in multiple sclerosis Parkinson’s disease and stroke: a systematic review of measurement properties. Qual Life Res 21(6):925–944.  https://doi.org/10.1007/s11136-011-0009-2 CrossRefGoogle Scholar
  36. 36.
    Fong TC, Chan JS, Chan CL et al (2015) Psychometric properties of the Chalder Fatigue Questionnaire revisited: an exploratory structural equation modeling approach. Qual Life Res.  https://doi.org/10.1007/s11136-015-0944-4 Google Scholar
  37. 37.
    Hopwood CJ, Donnellan MB (2010) How should the internal structure of personality inventories be evaluated? Personal Soc Psychol Rev.  https://doi.org/10.1177/1088868310361240 Google Scholar
  38. 38.
    Marsh HW, Muthén B, Asparouhov T, Lüdtke O, Robitzsch A, Morin AJ, Trautwein U (2009) Exploratory structural equation modeling, integrating CFA and EFA: application to students’ evaluations of university teaching. Struct Equ Model Multidiscip J.  https://doi.org/10.1080/10705510903008220 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Zentrum für Molekulare Neurobiologie Hamburg (ZMNH)Universitätsklinikum Hamburg EppendorfHamburgGermany
  2. 2.Department of PsychologyUniversity of KonstanzConstanceGermany
  3. 3.Lurija Institute for Rehabilitation and Health Sciences at the University of KonstanzSchmieder Foundation for Sciences and ResearchAllensbachGermany
  4. 4.Klinik und Poliklinik für NeurologieUniversitätsklinikum Hamburg-Eppendorf (UKE)HamburgGermany
  5. 5.Charité Universitätsmedizin Berlin, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin FranklinBerlinGermany
  6. 6.Charité Universitätsmedizin Berlin, Medizinische Klinik m.S. Psychosomatik, Campus Benjamin FranklinBerlinGermany
  7. 7.Department of Neurology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
  8. 8.COGITO Center for Applied Neurocognition and Neuropsychological ResearchDüsseldorfGermany

Personalised recommendations