Advertisement

Update on narcolepsy

  • P. J. ReadingEmail author
Neurological Update
  • 170 Downloads

Abstract

The last two decades have seen an explosion in our understanding of the clinical nature of narcolepsy and its pathogenesis, fuelling new approaches to potentially effective treatments. It is now recognised that the full narcoleptic syndrome has significant adverse effects on sleep regulation across the full 24-h period and is often associated with clinical features outside the sleep–wake domain. The discovery that most narcoleptic subjects specifically lack a hypothalamic neuropeptide (hypocretin, also called orexin) was a truly original and landmark observation in 1999, greatly furthering our understanding both of the syndrome itself and sleep biology in general. An autoimmune pathophysiology has long been suggested by the tight association with specific histocompatibility antigens and very recently partly confirmed by detailed analysis of T-cell immunological function in affected subjects. Drug treatments remain symptomatic but may soon become more focussed by restoring central hypocretin signalling with replacement therapy. Potentially disease-modifying, immunological approaches have yet to be studied systematically, although the interval between disease onset and development of the full clinical syndrome may be longer than previously appreciated, affording a realistic window of opportunity for limiting neuronal damage in this disabling condition.

Keywords

Narcolepsy Hypocretin Cataplexy Autoimmunity 

Notes

Compliance with ethical standards

Conflicts of interest

The author has no conflicts of interest to declare.

References

  1. 1.
    Silber MH, Krahn LE, Olson EJ, Pankratz VS (2002) The epidemiology of narcolepsy in Olmsted County, Minnesota: a population-based study. Sleep 25:197–202CrossRefGoogle Scholar
  2. 2.
    Ohayon MM, Priest RG, Zulley J et al (2002) Prevalence of narcolepsy symptomology and diagnosis in the European general population. Neurology 58:1826–1833CrossRefGoogle Scholar
  3. 3.
    Thorpy MJ, Krieger AC (2014) Delayed diagnosis of narcolepsy: characterization and impact. Sleep Med 15:502–507CrossRefGoogle Scholar
  4. 4.
    Lin L, Faraco J, Li R et al (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–376CrossRefGoogle Scholar
  5. 5.
    Nishino S, Ripley B, Overeem S et al (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355:39–40CrossRefGoogle Scholar
  6. 6.
    Peyron C, Tighe DK, van der Pol AN et al (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015CrossRefGoogle Scholar
  7. 7.
    Gonzalez JA, Iordanidou P, Strom M et al (2016) Awake dynamics and brain-wide inputs of hypothalamic MCH and orexin networks. Nat Commun 7:11395CrossRefGoogle Scholar
  8. 8.
    Parker JA, Bloom SR (2012) Hypothalamic neuropeptides and the regulation of appetite. Neuropharmacology 63:18–30CrossRefGoogle Scholar
  9. 9.
    De la Herran-Arita AK, Drucker-Colin R (2012) Models for narcolepsy with cataplexy drug discovery. Expert Opin Drug Discov 7:155–164CrossRefGoogle Scholar
  10. 10.
    Pizza F, Franceschini C, Peltola H et al (2015) Clinical and polysomnographic course of childhood narcolepsy with cataplexy. Brain 136:3787–3795CrossRefGoogle Scholar
  11. 11.
    Mahoney CE, Cogswell A, Koralnik IJ, Scammell TE (2018) The neurobiological basis of narcolepsy. Nat Rev Neurosci.  https://doi.org/10.1038/s41583-018-0097-x Google Scholar
  12. 12.
    Overeem S, Lammers GJ, van Dijk JG (1999) Weak with laughter. Lancet 354:838CrossRefGoogle Scholar
  13. 13.
    van Holst RJ, van der Cruijsen L, van Mierlo P et al (2016) Aberrant food choices after satiation in human orexin-deficient narcolepsy type 1. Sleep 39:1951–1959CrossRefGoogle Scholar
  14. 14.
    Lammers GJ, Pijl H, Iestra J et al (1996) Spontaneous food choice in narcolepsy. Sleep 19:75–76CrossRefGoogle Scholar
  15. 15.
    Schuld A, Hebebrand J, Geller F, Pollmacher T (2000) Increased body-mass index in patients with narcolepsy. Lancer 355:1275CrossRefGoogle Scholar
  16. 16.
    Chabas D, Foulon C, Gonzalez J et al (2007) Eating disorder and metabolism in narcoleptic patients. Sleep 30:1267–1273CrossRefGoogle Scholar
  17. 17.
    Poli F, Pizza F, Mignot E et al (2013) High prevalence of precocious puberty and obesity in childhood narcolepsy with cataplexy. Sleep 36:175–181CrossRefGoogle Scholar
  18. 18.
    Georgescu D, Zachariou V, Barrot M et al (2003) Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J Neurosci 23:3106–3111CrossRefGoogle Scholar
  19. 19.
    Sharf R, Sarhan M, Dileone RJ (2008) Orexin mediates the expression of precipitated morphine withdrawal and concurrent activation of the nucleus accumbens shell. Biol Psychiatry 64:175–183CrossRefGoogle Scholar
  20. 20.
    Shoblock JR, Welty N, Alusiio L et al (2011) Selective blockade of the orexin-2 receptor attenuates ethanol self-administration, place preference, and reinstatement. Psychpharmacology 215:191–203CrossRefGoogle Scholar
  21. 21.
    Dimitrova A, Fronczek R, van der Ploeg J et al (2011) Reward-seeking behaviour in human narcolepsy. J Clin Sleep Med 7:293–300Google Scholar
  22. 22.
    Ohayon MM (2013) Narcolepsy is complicated by high medical and psychiatric comorbidities: a comparison with the general population. Sleep Med 14:488–492CrossRefGoogle Scholar
  23. 23.
    The American Academy of Sleep Medicine (2012) The international classification of sleep disorders: diagnostic and coding manual, 3rd edn. AASM, ChicagoGoogle Scholar
  24. 24.
    Kayabashi T, Sagawa Y, Takemura F et al (2011) The pathophysiologic basis of secondary narcolepsy and hypersomnia. Curr Neurol Neurosci Rep 11:235–241CrossRefGoogle Scholar
  25. 25.
    Wing YK, Chen L, Lam SP et al (2011) Familial aggregation of narcolepsy. Sleep Med 12:947–951CrossRefGoogle Scholar
  26. 26.
    Peyron C, Faraco J, Rogers W et al (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6:991–997CrossRefGoogle Scholar
  27. 27.
    Taft M, Hor H, Dauvilliers Y et al (2014) DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep 37:19–25CrossRefGoogle Scholar
  28. 28.
    Pelin Z, Guilleminault C, Risch N et al (1998) HLA-DQB1*0602 homozygosity increases relative risk for narcolepsy but not disease severity in two ethnic groups. US Modafinil in Narcolepsy Multicenter Study Group. Tissue Antigens 51:96–100CrossRefGoogle Scholar
  29. 29.
    Ollila HM, Ravel JM, Han F et al (2015) HLA-DPB1 and HLA class I confer risk of and protection from narcolepsy. Am J Hum Genet 96:136–146CrossRefGoogle Scholar
  30. 30.
    Han F, Lin L, Warby SC et al (2011) Narcolepsy onset is seasonal and increased following the H1N1 pandemic in China. Ann Neurol 70:410–417CrossRefGoogle Scholar
  31. 31.
    Partinen M, Saarenpaa-Heikkila O, Ilveskoski I et al (2012) Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS One 7:e33732CrossRefGoogle Scholar
  32. 32.
    Sarkanen TO, Alakuijala APE, Dauvilliers YA, Partinenen MM (2018) Incidence of narcolepsy after H1N1 influenza and vaccinations: systematic review and meta-analysis. Sleep Med Rev 38:177–186CrossRefGoogle Scholar
  33. 33.
    Luo G, Ambati A, Lin L et al (2018) Autoimmunity to hypocretin and molecular mimicry to flu in type 1 narcolepsy. Proc Natl Acad Sci USA 115:E12323–E12332CrossRefGoogle Scholar
  34. 34.
    Scammell TE (2006) The frustrating and mostly fruitless search for an autoimmune cause of narcolepsy. Sleep 29:633–638CrossRefGoogle Scholar
  35. 35.
    Luo G, Lin L, Jacob L et al (2017) Absence of anti-hypocretin receptor 2 autoantibodies in post pandremix narcolepsy cases. PLoS One 12:e0187305CrossRefGoogle Scholar
  36. 36.
    Liblau RS (2018) Put to sleep by immune cells. Nature 562:46–48CrossRefGoogle Scholar
  37. 37.
    Siebald C, Hansen BE, Wyer JR et al (2004) Crystal structure of HLA-DQ0602 that protects against type 1 diabetes and confers string susceptibility to narcolepsy. Proc Natl Acad Sci USA 101:1999–2004CrossRefGoogle Scholar
  38. 38.
    Hallmayer J, Faraco J, Lin L et al (2009) Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat Genet 41:708–711CrossRefGoogle Scholar
  39. 39.
    Latorre D, Kallweit U, Armentani E et al (2018) T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature 562:63–68CrossRefGoogle Scholar
  40. 40.
    Lopez R, Barateau L, Evangelista E et al (2017) Temporal changes in the cerebrospinal fluid level of hypocretin-1 and histamine in narcolepsy. Sleep.  https://doi.org/10.1093/sleep/zsw010 Google Scholar
  41. 41.
    Pizza F, Vandi S, Liguori R et al (2014) Primary progressive narcolepsy type 1: the other side of the coin. Neurology 83:2189–2190CrossRefGoogle Scholar
  42. 42.
    Walker LA, Bourque P, Smith AM, Warman Chardon J (2017) Autosomal dominant cerebellar ataxia, deafness, and narcolepsy (ADCA-DN) associated with progressive cognitive and behavioural deterioration. Neuropsychology 31:292–303CrossRefGoogle Scholar
  43. 43.
    Roth T, Dauvilliers Y, Guinta D et al (2017) Effect of sodium oxybate on disrupted nighttime sleep in patiens with narcolepsy. J Sleep Res 26:407–414CrossRefGoogle Scholar
  44. 44.
    Alshaikh MK, Tricco AC, Tashkandi M et al (2012) Sodium oxybate for narcolepsy with cataplexy: systematic review and meta-analysis. J Clin Sleep Med 15:451–458Google Scholar
  45. 45.
    Calik MW (2017) Update on the treatment of narcolepsy: clinical efficacy of pitolisant. Nat Sci Sleep 9:127–133CrossRefGoogle Scholar
  46. 46.
    Szakacs Z, Dauvilliers Y, Mikhaylov V et al (2017) Safety and efficacy of pitolisant on cataplexy in patients with narcolepsy: a randomized, double-blind, placebo-controlled trial. Lancet Neurol 16:200–207CrossRefGoogle Scholar
  47. 47.
    Abad VC, Guilleminault C (2018) Solriamfetol for the treatment of daytime sleepiness in obstructive sleep apnea. Expert Rev Respir Med 2:1–13Google Scholar
  48. 48.
    Irukayama-Tomobe Y, Ogawa Y, Tominaga H et al (2017) Nonpeptide orexin type-2 receptor agonist ameliorates narcolepsy-cataplexy symptoms in mouse models. Proc Natl Acad Sci USA 30(114):5731–5736CrossRefGoogle Scholar
  49. 49.
    Takenoshita S, Sakai N, Chiba Y et al (2018) An overview of hypocretin based therapy in narcolepsy. Expert Opin Investig Drugs 27:389–406CrossRefGoogle Scholar
  50. 50.
    Nishino S, Sakurai E, Nevsimalova S et al (2009) Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. Sleep 32:175–180CrossRefGoogle Scholar
  51. 51.
    Schone C, Aspergis-Schoute J, Sakurai T et al (2014) Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep 7:687–704CrossRefGoogle Scholar
  52. 52.
    Reti IM, Reddy R, Worley PF, Baraban JM (2002) Selective expression of Narp, a secreted neuronal pentraxin, in orexin neurons. J Neurochem 82:1561–1565CrossRefGoogle Scholar
  53. 53.
    Chou TC, Lee CE, Lu J et al (2001) Orexin (hypocretin) neurons contain dynorphin. J Neurosci 21:RC168CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeurologyJames Cook University HospitalMiddlesbroughUK

Personalised recommendations