Advertisement

Patient MW: transient visual hemi-agnosia

  • Thomas Decramer
  • Elsie Premereur
  • Lieven Lagae
  • Johannes van Loon
  • Peter Janssen
  • Stefan Sunaert
  • Tom Theys
Original Communication

Abstract

The concept of functional modularity in human visual processing was proposed 25 years ago with the distinction between a ventral pathway for object recognition and a dorsal pathway for action processing. Lesions along these pathways yield selective deficits. A 15-year-old patient (MW) presented with a seizure due to a lesion in the left occipitotemporal cortex. Surgical resection of the lesion was performed with sparing of the classic language areas and visual fields. Postoperatively MW had great difficulty reading and had a specific agnosia for more complex visual stimuli in the right hemifield. No deficit was seen for lower level visual discrimination tasks. Gradual improvement of hemi-agnosia was paralleled by slower reaction times reflecting a speed–accuracy trade-off. Absolute reading speed improved markedly over time, doubling at 6 weeks. MW fully recovered after 18 months. Postoperative functional Magnetic Resonance Imaging (fMRI) illustrated an overlap of the lesion with object and word processing areas. Diffusion Tensor Imaging showed damage to the white matter tracts [inferior fronto-occipital fasciculus and inferior longitudinal fasciculus (ILF)] interconnecting ventral temporal areas. A transient higher order deficit can result from a disruption of the neural network supporting visual word and object processing. Most visual system research has focused on cortical areas, while the underlying subcortical network received much less attention. We believe that white matter tracts, in particular the ILF, play a critical role in object perception by connecting visual areas along the ventral visual stream. Lesions of the ILF should be taken into consideration in agnosia.

Keywords

Occipitotemporal cortex Visual agnosia Visual pathways Visual perception Reading Visual processing Ventral visual pathway 

Notes

Funding

Tom Theys is a Senior Clinical Investigator of FWO Flanders (FWO 1830717N).

Compliance with ethical standards

Conflicts of interest

All authors report no conflict of interest.

References

  1. 1.
    Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25CrossRefGoogle Scholar
  2. 2.
    Mishkin M, Ungerleider LG (1982) Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res 6(1):57–77CrossRefGoogle Scholar
  3. 3.
    Janssen P, Verhoef BE, Premereur E (2017) Functional interactions between the macaque dorsal and ventral visual pathways during three-dimensional object vision. Cortex.  https://doi.org/10.1016/j.cortex.2017.01.021 Google Scholar
  4. 4.
    Goodale MA, Milner AD, Jakobson LS, Carey DP (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349(6305):154–156.  https://doi.org/10.1038/349154a0 CrossRefGoogle Scholar
  5. 5.
    Newcombe F, Ratcliff G, Damasio H (1987) Dissociable visual and spatial impairments following right posterior cerebral lesions: clinical, neuropsychological and anatomical evidence. Neuropsychologia 25(1B):149–161CrossRefGoogle Scholar
  6. 6.
    Jakobson LS, Archibald YM, Carey DP, Goodale MA (1991) A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia 29(8):803–809CrossRefGoogle Scholar
  7. 7.
    Merigan W, Freeman A, Meyers SP (1997) Parallel processing streams in human visual cortex. Neuroreport 8(18):3985–3991CrossRefGoogle Scholar
  8. 8.
    Gaillard R, Naccache L, Pinel P, Clemenceau S, Volle E, Hasboun D, Dupont S, Baulac M, Dehaene S, Adam C, Cohen L (2006) Direct intracranial, FMRI, and lesion evidence for the causal role of left inferotemporal cortex in reading. Neuron 50(2):191–204.  https://doi.org/10.1016/j.neuron.2006.03.031 CrossRefGoogle Scholar
  9. 9.
    Rezlescu C, Barton JJ, Pitcher D, Duchaine B (2014) Normal acquisition of expertise with greebles in two cases of acquired prosopagnosia. Proc Natl Acad Sci USA 111(14):5123–5128.  https://doi.org/10.1073/pnas.1317125111 CrossRefGoogle Scholar
  10. 10.
    Konen CS, Behrmann M, Nishimura M, Kastner S (2011) The functional neuroanatomy of object agnosia: a case study. Neuron 71(1):49–60.  https://doi.org/10.1016/j.neuron.2011.05.030 CrossRefGoogle Scholar
  11. 11.
    Rennig J, Karnath HO, Cornelsen S, Wilhelm H, Himmelbach M (2017) Hemifield coding in ventral object-sensitive areas—evidence from visual hemiagnosia. Cortex.  https://doi.org/10.1016/j.cortex.2017.06.011 Google Scholar
  12. 12.
    Rennig J, Cornelsen S, Wilhelm H, Himmelbach M, Karnath HO (2017) Preserved expert object recognition in a case of visual hemiagnosia. J Cogn Neurosci.  https://doi.org/10.1162/jocn_a_01193 Google Scholar
  13. 13.
    Mazzucchi A, Posteraro L, Nuzzi G, Parma M (1985) Unilateral visual agnosia. Cortex 21(2):309–316CrossRefGoogle Scholar
  14. 14.
    Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11(3):641–649CrossRefGoogle Scholar
  15. 15.
    Haxby JV, Horwitz B, Ungerleider LG, Maisog JM, Pietrini P, Grady CL (1994) The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J Neurosci 14(11 Pt 1):6336–6353CrossRefGoogle Scholar
  16. 16.
    Tootell RB, Dale AM, Sereno MI, Malach R (1996) New images from human visual cortex. Trends Neurosci 19(11):481–489.  https://doi.org/10.1016/S0166-2236(96)10053-9 CrossRefGoogle Scholar
  17. 17.
    Popivanov ID, Jastorff J, Vanduffel W, Vogels R (2014) Heterogeneous single-unit selectivity in an fMRI-defined body-selective patch. J Neurosci 34(1):95–111.  https://doi.org/10.1523/JNEUROSCI.2748-13.2014 CrossRefGoogle Scholar
  18. 18.
    Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML, Ghosh SS (2011) Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front Neuroinform 5:13.  https://doi.org/10.3389/fninf.2011.00013 CrossRefGoogle Scholar
  19. 19.
    Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37(1):90–101.  https://doi.org/10.1016/j.neuroimage.2007.04.042 CrossRefGoogle Scholar
  20. 20.
    Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE (2014) Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 84:320–341.  https://doi.org/10.1016/j.neuroimage.2013.08.048 CrossRefGoogle Scholar
  21. 21.
    Decramer T, Van Keer K, Stalmans P, Dupont P, Sunaert S, Theys T (2018) Tracking posttraumatic hemianopia. J Neurol 265(1):41–45.  https://doi.org/10.1007/s00415-017-8661-2 CrossRefGoogle Scholar
  22. 22.
    Catani M, ffytche DH (2005) The rises and falls of disconnection syndromes. Brain 128(Pt 10):2224–2239.  https://doi.org/10.1093/brain/awh622 CrossRefGoogle Scholar
  23. 23.
    Ffytche DH, Blom JD, Catani M (2010) Disorders of visual perception. J Neurol Neurosurg Psychiatry 81(11):1280–1287.  https://doi.org/10.1136/jnnp.2008.171348 CrossRefGoogle Scholar
  24. 24.
    Fernandez Coello A, Duvaux S, De Benedictis A, Matsuda R, Duffau H (2013) Involvement of the right inferior longitudinal fascicle in visual hemiagnosia: a brain stimulation mapping study. J Neurosurg 118(1):202–205.  https://doi.org/10.3171/2012.10.JNS12527 CrossRefGoogle Scholar
  25. 25.
    Mandonnet E, Gatignol P, Duffau H (2009) Evidence for an occipito-temporal tract underlying visual recognition in picture naming. Clin Neurol Neurosurg 111(7):601–605.  https://doi.org/10.1016/j.clineuro.2009.03.007 CrossRefGoogle Scholar
  26. 26.
    Grossi D, Soricelli A, Ponari M, Salvatore E, Quarantelli M, Prinster A, Trojano L (2014) Structural connectivity in a single case of progressive prosopagnosia: the role of the right inferior longitudinal fasciculus. Cortex 56:111–120.  https://doi.org/10.1016/j.cortex.2012.09.010 CrossRefGoogle Scholar
  27. 27.
    Rubino C, Yeung SC, Barton JJ (2016) The impact of central sparing on the word-length effect in hemianopia. Cogn Neuropsychol.  https://doi.org/10.1080/02643294.2016.1232707 Google Scholar
  28. 28.
    McCandliss BD, Cohen L, Dehaene S (2003) The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn Sci 7(7):293–299CrossRefGoogle Scholar
  29. 29.
    Cohen L, Lehericy S, Chochon F, Lemer C, Rivaud S, Dehaene S (2002) Language-specific tuning of visual cortex? Functional properties of the visual word form area. Brain 125(Pt 5):1054–1069CrossRefGoogle Scholar
  30. 30.
    Hirshorn EA, Li Y, Ward MJ, Richardson RM, Fiez JA, Ghuman AS (2016) Decoding and disrupting left midfusiform gyrus activity during word reading. Proc Natl Acad Sci USA 113(29):8162–8167.  https://doi.org/10.1073/pnas.1604126113 CrossRefGoogle Scholar
  31. 31.
    Epelbaum S, Pinel P, Gaillard R, Delmaire C, Perrin M, Dupont S, Dehaene S, Cohen L (2008) Pure alexia as a disconnection syndrome: new diffusion imaging evidence for an old concept. Cortex 44(8):962–974.  https://doi.org/10.1016/j.cortex.2008.05.003 CrossRefGoogle Scholar
  32. 32.
    Gersztenkorn D, Lee AG (2015) Palinopsia revamped: a systematic review of the literature. Surv Ophthalmol 60(1):1–35.  https://doi.org/10.1016/j.survophthal.2014.06.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neurosciences, Research Group Experimental Neurosurgery and NeuroanatomyKU LeuvenLeuvenBelgium
  2. 2.Laboratory for Experimental Neuro- and Psychophysiology, Department of NeurosciencesKU LeuvenLeuvenBelgium
  3. 3.Department of PediatricsUniversity Hospitals LeuvenLeuvenBelgium
  4. 4.Department of Imaging and Pathology, Translational MRIKU LeuvenLeuvenBelgium

Personalised recommendations