Advertisement

Journal of Neurology

, Volume 266, Issue 2, pp 450–460 | Cite as

Patient characteristics and outcome associations in AMPA receptor encephalitis

  • Osvaldo Laurido-Soto
  • Matthew R. Brier
  • Laura E. Simon
  • Austin McCullough
  • Robert C. Bucelli
  • Gregory S. DayEmail author
Original Communication

Abstract

Antibody-mediated encephalitis defines a class of diseases wherein antibodies directed at cell-surface receptors are associated with behavioral and cognitive disturbances. One such recently described encephalitis is due to antibodies directed at alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). This entity is exceptionally rare and its clinical phenotype incompletely described. We present findings from two cases of AMPAR encephalitis that exemplify variability in the disease spectrum, and summarize findings in published cases derived from a systematic literature review. When all patients are considered together, the presence of psychiatric symptoms at presentation portended a poor outcome and was associated with the presence of a tumor. Furthermore, we provide evidence to suggest that the topography of magnetic resonance imaging abnormalities in reported cases mirrors the distribution of AMPARs in the human brain. The potential for neurological improvement following immunomodulatory therapy together with the favorable outcome reported in most cases emphasizes the importance of testing for autoantibodies against neuronal cell-surface proteins, including AMPAR, in patients with clinical and neuroimaging findings suggestive of autoimmune encephalitis. Close attention to the clinical phenotype may inform the presence of malignancy and long-term prognosis.

Keywords

Autoimmune encephalitis Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor Paraneoplastic encephalitis Limbic encephalitis 

Notes

Acknowledgements

Funding was provided by the American Academy of Neurology/American Brain Foundation (Clinical Research Training Fellowship to GSD).

Compliance with ethical standards

Conflicts of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.   Dr. Bucelli receives an annual gift from a patient's family for Parsonage-Turner research; served on an advisory board for MT Pharma; and has equity in Neuroquestions, LLC. Dr. Day has served as a topic editor on dementia for DynaMed Plus (EBSCO Industries, Inc) and as clinical director for the Anti-NMDA Receptor Encephalitis Foundation (uncompensated). Dr. Day receives research/grant support from The American Academy of Neurology/American Brain Foundation, Avid Radiopharmaceuticals, the Foundation for Barnes Jewish Hospital, and the National Institutes of Health (P01AG03991, R56AG057195, U01AG057195) and holds stock in ANI Pharmaceuticals, Inc. Dr. Day has provided record review and expert medical testimony on legal cases pertaining to management of Wernicke encephalopathy. All other authors have no relevant disclosures to report.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Supplementary material

415_2018_9153_MOESM1_ESM.xlsx (17 kb)
Supplementary material 1 (XLSX 18 KB) 
415_2018_9153_MOESM2_ESM.xlsx (14 kb)
Supplementary material 2 (XLSX 14 KB) 

References

  1. 1.
    Dubey D, Pittock SJ, Kelly CR et al (2018) Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann Neurol 83(1):166–177.  https://doi.org/10.1002/ana.25131 Google Scholar
  2. 2.
    Gable MS, Sheriff H, Dalmau J, Tilley DH, Glaser CA (2012) The frequency of autoimmune N-methyl-d-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the California encephalitis project. Clin Infect Dis 54(7):899–904.  https://doi.org/10.1093/cid/cir1038 Google Scholar
  3. 3.
    Dalmau J, Graus F (2018) Antibody-mediated encephalitis. N Engl J Med 378(9):840–851.  https://doi.org/10.1056/NEJMra1708712 Google Scholar
  4. 4.
    Graus F, Titulaer MJ, Balu R et al (2016) A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 15(4):391–404.  https://doi.org/10.1016/S1474-4422(15)00401-9 Google Scholar
  5. 5.
    Titulaer MJ, McCracken L, Gabilondo I et al (2013) Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 12(2):157–165.  https://doi.org/10.1016/S1474-4422(12)70310-1 Google Scholar
  6. 6.
    Dalmau J, Gleichman AJ, Hughes EG et al (2008) Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 7(12):1091–1098.  https://doi.org/10.1016/S1474-4422(08)70224-2 Google Scholar
  7. 7.
    Flanagan EP, McKeon A, Lennon VA et al (2010) Autoimmune dementia: clinical course and predictors of immunotherapy response. Mayo Clin Proc 85(10):881–897.  https://doi.org/10.4065/mcp.2010.0326 Google Scholar
  8. 8.
    McKeon GL, Robinson GA, Ryan AE et al (2018) Cognitive outcomes following anti-N-methyl-d-aspartate receptor encephalitis: a systematic review. J Clin Exp Neuropsychol 40(3):234–252.  https://doi.org/10.1080/13803395.2017.1329408 Google Scholar
  9. 9.
    Finke C, Kopp UA, Prüss H, Dalmau J, Wandinger K-P, Ploner CJ (2012) Cognitive deficits following anti-NMDA receptor encephalitis. J Neurol Neurosurg Psychiatry 83(2):195–198.  https://doi.org/10.1136/jnnp-2011-300411 Google Scholar
  10. 10.
    Finke C, Prüss H, Heine J et al (2017) Evaluation of cognitive deficits and structural hippocampal damage in encephalitis with leucine-rich, glioma-inactivated 1 antibodies. JAMA Neurol 74(1):50–59.  https://doi.org/10.1001/jamaneurol.2016.4226 Google Scholar
  11. 11.
    Lai M, Hughes EG, Peng X et al (2010) AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol 65(4):424–434.  https://doi.org/10.1002/ana.21589.AMPA Google Scholar
  12. 12.
    Byun JI, Lee ST, Jung KH et al (2016) Prevalence of antineuronal antibodies in patients with encephalopathy of unknown etiology: data from a nationwide registry in Korea. J Neuroimmunol 293:34–38.  https://doi.org/10.1016/j.jneuroim.2016.02.002 Google Scholar
  13. 13.
    Graus F, Boronat A, Xifro X et al (2010) The expanding clinical profile of anti-AMPA receptor encephalitis. Neurology 74:857–859.  https://doi.org/10.1212/WNL.0b013e3181d3e404 Google Scholar
  14. 14.
    Hoftberger R, van Sonderen A, Houghton D et al (2015) Encephalitis and AMPA receptor antibodies: novel findings in a case series of 22 patients. Neurology 84:2403–2412Google Scholar
  15. 15.
    Van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJA, Van Gijn J (1988) Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19(5):604–607Google Scholar
  16. 16.
    Fischl B (2012) FreeSurfer. Neuroimage 62(2):774–781.  https://doi.org/10.1016/J.NEUROIMAGE.2012.01.021 Google Scholar
  17. 17.
    Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL et al (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489(7416):391–399.  https://doi.org/10.1038/nature11405 Google Scholar
  18. 18.
    Dahm L, Ott C, Steiner J et al (2014) Seroprevalence of autoantibodies against brain antigens in health and disease. Ann Neurol 76(1):82–94.  https://doi.org/10.1002/ana.24189 Google Scholar
  19. 19.
    Castillo-Gómez E, Oliveira B, Tapken D et al (2017) All naturally occurring autoantibodies against the NMDA receptor subunit NR1 have pathogenic potential irrespective of epitope and immunoglobulin class. Mol Psychiatry 22(12):1776–1784.  https://doi.org/10.1038/mp.2016.125 Google Scholar
  20. 20.
    Hammer C, Stepniak B, Schneider A et al (2014) Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity. Mol Psychiatry 19(10):1143–1149.  https://doi.org/10.1038/mp.2013.110 Google Scholar
  21. 21.
    Hara M, Martinez-Hernandez E, Ariño H et al (2018) Clinical and pathogenic significance of IgG, IgA, and IgM antibodies against the NMDA receptor. Neurology.  https://doi.org/10.1212/WNL.0000000000005329 Google Scholar
  22. 22.
    Steiner J (2014) Prevalence of N-methyl-d-aspartate receptor autoantibodies in the peripheral blood: healthy control samples revisited. JAMA Psychiatry 71(7):838–839.  https://doi.org/10.1038/mp.2013.110.3 Google Scholar
  23. 23.
    Joubert B, Kerschen P, Zekeridou A et al (2015) Clinical spectrum of encephalitis associated with antibodies against the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor: case series and review of the literature. JAMA Neurol 72(10):1163–1169.  https://doi.org/10.1001/jamaneurol.2015.1715 Google Scholar
  24. 24.
    Haselmann H, Mannara F, Werner C et al (2018) Human autoantibodies against the AMPA receptor subunit GluA2 induce receptor reorganization and memory dysfunction. Neuron.  https://doi.org/10.1016/j.neuron.2018.07.048 Google Scholar
  25. 25.
    Gleichman AJ, Panzer JA, Baumann BH, Dalmau J, Lynch DR (2014) Antigenic and mechanistic characterization of anti-AMPA receptor encephalitis. Ann Clin Transl Neurol 1(3):180–189.  https://doi.org/10.1002/acn3.43 Google Scholar
  26. 26.
    Sprengel R (2006) Role of AMPA receptors in synaptic plasticity. Cell Tissue Res 326(2):447–455.  https://doi.org/10.1007/s00441-006-0275-4 Google Scholar
  27. 27.
    Genoux D, Montgomery JM (2007) Glutamate receptor plasticity at excitatory synapses in the brain. Clin Exp Pharmacol Physiol 34(10):1058–1063.  https://doi.org/10.1111/j.1440-1681.2007.04722.x Google Scholar
  28. 28.
    Wei YC, Liu CH, Lin JJ et al (2013) Rapid progression and brain atrophy in anti-AMPA receptor encephalitis. J Neuroimmunol 261(1–2):129–133.  https://doi.org/10.1016/j.jneuroim.2013.05.011 Google Scholar
  29. 29.
    Spatola M, Stojanova V, Prior JO, Dalmau J, Rossetti AO (2014) Serial brain 18FDG-PET in anti-AMPA receptor limbic encephalitis. J Neuroimmunol 271(1–2):53–55.  https://doi.org/10.1016/j.jneuroim.2014.04.002 Google Scholar
  30. 30.
    Bataller L, Galiano R, Garcia-Escrig M et al (2010) Reversible paraneoplastic limbic encephalitis associated with antibodies to the AMPA receptor. Neurology 74(3):265–267Google Scholar
  31. 31.
    Omi T, Kinoshita M, Nishikawa A et al (2018) Clinical relapse of anti-AMPA receptor encephalitis associated with recurrence of thymoma. Intern Med.  https://doi.org/10.2169/internalmedicine.9682-17 Google Scholar
  32. 32.
    Yang S, Qin J, Li J et al (2016) Rapidly progressive neurological deterioration in anti-AMPA receptor encephalitis with additional CRMP5 antibodies. Neurol Sci 37(11):1853–1855.  https://doi.org/10.1007/s10072-016-2680-0 Google Scholar
  33. 33.
    Takemoto K, Iwanari H, Tada H et al (2016) Optical inactivation of synaptic AMPA receptors erases fear memory. Nat Biotechnol 35(1):38–47.  https://doi.org/10.1038/nbt.3710 Google Scholar
  34. 34.
    Lahiri S, Coad SD (2013) Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor mediated limbic encephalitis in a fourteen-year-old (P05.114). Neurology 80(7 Supplement):P05.114Google Scholar
  35. 35.
    Liu HS, Ren HT, Zhou LX et al (2017) Clinical analysis of paraneoplastic neurological syndrome associated with thymoma. J Chin Med Assoc 97(35):2770–2774.  https://doi.org/10.3760/CMA.J.ISSN.0376-2491.2017.35.013 Google Scholar
  36. 36.
    van Den Tooren H, Maskery M, Kobylecki C, Rathod N, Siripurapu R, Mckee D (2016) Presumed tuberculous meningitis relapsing after steroid reduction: a case of AMPA receptor antibody-associated encephalitis. Eur J Neurol 23:854Google Scholar
  37. 37.
    Mittal MK, Rabinstein AA, Hocker SE, Pittock SJ, Wijdicks EF, McKeon A (2016) Autoimmune encephalitis in the ICU: analysis of phenotypes, serologic findings, and outcomes. Neurocrit Care 24(2):240–250.  https://doi.org/10.1007/s12028-015-0196-8 Google Scholar
  38. 38.
    Saraya A, Mahavihakanont A, Shuangshoti S et al (2013) Autoimmune causes of encephalitis syndrome in Thailand: prospective study of 103 patients. BMC Neurol.  https://doi.org/10.1186/1471-2377-13-150 Google Scholar
  39. 39.
    Elamin M, Lonergan R, Killeen RP, O’Riordan S, Tubridy N, McGuigan C (2015) Posterior cortical and white matter changes on MRI in anti-AMPA receptor antibody encephalitis. Neurol Neuroimmunol Neuroinflamm 2(4):1–2.  https://doi.org/10.1212/NXI.0000000000000118 Google Scholar
  40. 40.
    Dishner E, Majid-Moosa A, Shamim S, Mora A (2015) When two antibodies cause one disease. Chest 148(4):272A.  https://doi.org/10.1378/chest.2274489 Google Scholar
  41. 41.
    Schou M, Sæther SG, Borowski K et al (2016) Prevalence of serum anti-neuronal autoantibodies in patients admitted to acute psychiatric care. Psychol Med 46(16):3303–3313.  https://doi.org/10.1017/S0033291716002038 Google Scholar
  42. 42.
    Zekeridou A, McKeon A, Lennon VA (2016) Frequency of synaptic autoantibody accompaniments and neurological manifestations of thymoma. JAMA Neurol 73(7):853–859.  https://doi.org/10.1001/jamaneurol.2016.0603 Google Scholar
  43. 43.
    Boangher S, Mespouille P, Filip C-M, Goffette S (2016) Small-cell lung cancer with positive anti-NMDAR and anti-AMPAR antibodies paraneoplastic limbic encephalitis. Case Rep Neurol Med 2016:1–3.  https://doi.org/10.1155/2016/3263718 Google Scholar
  44. 44.
    Quaranta G, Maremmani AGI, Perugi G (2015) Anti-AMPA-receptor encephalitis presenting as a rapid-cycling bipolar disorder in a young woman with turner syndrome. Case Rep Psychiatry 2015:1–5.  https://doi.org/10.1155/2015/273192 Google Scholar
  45. 45.
    Linnoila JJ, Binnicker MJ, Majed M, Klein CJ, McKeon A (2016) CSF herpes virus and autoantibody profiles in the evaluation of encephalitis. Neurol Neuroimmunol Neuroinflamm 3(4):e245.  https://doi.org/10.1212/NXI.0000000000000245 Google Scholar
  46. 46.
    Zaeem Z, Luk C, Anderson D, Blevins G, Siddiqi Z (2018) AMPA-R limbic encephalitis associated with systemic lupus erythematosus. Neurology 90(15 Supplement):P5.386Google Scholar
  47. 47.
    De Mesa C, Crump M (2013) Anti-AMPA receptor limbic encephalitis presenting with ovarian teratoma, encephalopathy and autonomic instability. PM&R 5(9):S273–S274.  https://doi.org/10.1016/j.pmrj.2013.08.473 Google Scholar
  48. 48.
    Pinto L, Simabukuro M, Spera R et al (2016) AMPA receptor antibody encephalitis in a young man associated with atypical findings. Case report. Neurology 86(16 Supplement):P2-265Google Scholar
  49. 49.
    Takahashi C, Holmes S, Wong M (2017) A rare case of AMPA-R antibody positive paraneoplastic limbic encephalitis. Neurology 88(16):SupplementGoogle Scholar
  50. 50.
    Li X, Mao YT, Wu JJ, Li LX, Chen XJ (2015) Anti-AMPA receptor encephalitis associated with thymomatous myasthenia gravis. J Neuroimmunol 281:35–37.  https://doi.org/10.1016/j.jneuroim.2015.02.011 Google Scholar
  51. 51.
    Dogan Onugoren M, Deuretzbacher D, Haensch CA et al (2015) Limbic encephalitis due to GABA B and AMPA receptor antibodies: a case series. J Neurol Neurosurg Psychiatry 86(9):965–972.  https://doi.org/10.1136/jnnp-2014-308814 Google Scholar
  52. 52.
    Zhu M, Yu X, Liu C et al (2017) Hashimoto’s encephalitis associated with AMPAR2 antibodies: a case report. BMC Neurol 17(1):1–5.  https://doi.org/10.1186/s12883-017-0823-4 Google Scholar
  53. 53.
    Wei Y-C, Huang C-C, Liu C-H, Kuo H-C, Lin J-J (2017) Peripheral neuropathy in limbic encephalitis with anti-glutamate receptor antibodies: case report and systematic literature review. Brain Behav 7(9):e00779.  https://doi.org/10.1002/brb3.779 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Osvaldo Laurido-Soto
    • 1
  • Matthew R. Brier
    • 1
  • Laura E. Simon
    • 2
  • Austin McCullough
    • 3
  • Robert C. Bucelli
    • 1
  • Gregory S. Day
    • 1
    • 4
    Email author
  1. 1.Department of NeurologyWashington University in St. LouisSaint LouisUSA
  2. 2.Bernard Becker Medical LibraryWashington University in St. LouisSaint LouisUSA
  3. 3.Mallinckrodt Institute of RadiologyWashington University in St. LouisSaint LouisUSA
  4. 4.Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of MedicineSaint LouisUSA

Personalised recommendations