Advertisement

Brain tissue volumes and relaxation rates in multiple sclerosis: implications for cognitive impairment

  • Rosario Megna
  • Bruno Alfano
  • Roberta Lanzillo
  • Teresa Costabile
  • Marco Comerci
  • Giovanni Vacca
  • Antonio Carotenuto
  • Marcello Moccia
  • Giuseppe Servillo
  • Anna Prinster
  • Vincenzo Brescia Morra
  • Mario QuarantelliEmail author
Original Communication

Abstract

Objective

Both normal gray matter atrophy and brain tissue relaxation rates, in addition to total lesion volume, have shown significant correlations with cognitive test scores in multiple sclerosis (MS). Aim of the study was to assess the relative contributions of macro- and microstructural changes of both normal and abnormal brain tissues, probed, respectively, by their volumes and relaxation rates, to the cognitive status and physical disability of MS patients.

Methods

MRI studies from 241 patients with relapsing–remitting MS were retrospectively analyzed by fully automated multiparametric relaxometric segmentation. Ordinal backward regression analysis was applied to the resulting volumes and relaxation rates of both normal (gray matter, normal-appearing white matter and CSF) and abnormal (T2-weighted lesions) brain tissues, controlling for age, sex and disease duration, to identify the main independent contributors to the cognitive status, as measured by the percentage of failed tests at a cognitive test battery (Rao’s Brief Repeatable Battery and Stroop test, available in 186 patients), and to the physical disability, as assessed by the Expanded Disability Status Scale (EDSS).

Results

The R1 relaxation rate (a putative marker of tissue disruption) of the MS lesions appeared the single most significant contributor to cognitive impairment (p < 0.001). On the contrary, the EDSS appeared mainly affected by the decrease in R2 of the gray matter (p < 0.0001), (possibly influenced by cortical plaques, edema and inflammation).

Conclusions

In RR-MS the tissue damage in white matter lesions appears the single main determinant of the cognitive status of patients, likely through disconnection phenomena, while the physical disability appears related to the involvement of gray matter.

Keywords

Atrophy Multiple sclerosis Quantitative MRI Relapsing/remitting Cognitive impairment Relaxation rates 

Notes

Acknowledgements

Funding by the European Union’s Seventh Framework Programme (FP7/2007–2013) under Grant agreement no. HEALTH-F2-2011-278850 (INMiND), and by the CNR Strategic Project “The Aging: Technological and Molecular Innovations Aiming to Improve the Health of Older Citizens” (http://www.progettoinvecchiamento.it) is gratefully acknowledged.

Compliance with ethical standards

Ethical standards

All human studies have been approved by the Institutional Review Board of the university “Federico II” and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

All participants gave informed written consent.

Conflicts of interest

R.L. received personal fees for public speaking or consultancy from Merck, Novartis, Biogen, Genzyme, Teva and Almirall. V.B.M. received personal fees for public speaking or consultancy from Bayer, Mylan, Merck, Novartis, Biogen, Genzyme, Teva and Almirall. M.M. declares that he has received honoraria and support for travelling from Almirall, Coloplast, Genzyme and Merck Serono. R.M., B.A., T.C., M.C., G.V., A.C., A.P., G.S., and M.Q. declare that they have no conflict of interest.

Supplementary material

415_2018_9139_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 36 KB)

References

  1. 1.
    Chiaravalloti ND, DeLuca J (2008) Cognitive impairment in multiple sclerosis. Lancet Neurol 7:1139–1151.  https://doi.org/10.1016/S1474-4422(08)70259-X CrossRefPubMedGoogle Scholar
  2. 2.
    Rocca MA, Amato MP, De Stefano N et al (2015) Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol 14:302–417.  https://doi.org/10.1016/S1474-4422(14)70250-9 CrossRefPubMedGoogle Scholar
  3. 3.
    Jacobsen CO, Farbu E (2014) MRI evaluation of grey matter atrophy and disease course in multiple sclerosis: an overview of current knowledge. Acta Neurol Scand Suppl 129:32–36.  https://doi.org/10.1111/ane.12234 CrossRefGoogle Scholar
  4. 4.
    Calabrese M, Rinaldi F, Mattisi I et al (2010) Widespread cortical thinning characterizes patients with MS with mild cognitive impairment. Neurology 74:321–328.  https://doi.org/10.1212/WNL.0b013e3181cbcd03 CrossRefPubMedGoogle Scholar
  5. 5.
    Benedict RHB, Weinstock-Guttman B, Fishman I et al (2004) Prediction of neuropsychological impairment in multiple sclerosis: comparison of conventional magnetic resonance imaging measures of atrophy and lesion burden. Arch Neurol 61:226–230.  https://doi.org/10.1001/archneur.61.2.226 CrossRefPubMedGoogle Scholar
  6. 6.
    Sanfilipo MP, Benedict RHB, Weinstock-Guttman B, Bakshi R (2006) Gray and white matter brain atrophy and neuropsychological impairment in multiple sclerosis. Neurology 66:685–692.  https://doi.org/10.1212/01.wnl.0000201238.93586.d9 CrossRefPubMedGoogle Scholar
  7. 7.
    Amato MP, Portaccio E, Stromillo ML et al (2008) Cognitive assessment and quantitative magnetic resonance metrics can help to identify benign multiple sclerosis. Neurology 71:632–638.  https://doi.org/10.1212/01.wnl.0000324621.58447.00 CrossRefPubMedGoogle Scholar
  8. 8.
    Does MD (2018) Inferring brain tissue composition and microstructure via MR relaxometry. NeuroImage.  https://doi.org/10.1016/j.neuroimage.2017.12.087 CrossRefPubMedGoogle Scholar
  9. 9.
    Kleine LJ, Mulkern RV, Guttmann CR et al (1995) In vivo characterization of cytotoxic intracellular edema by multicomponent analysis of transverse magnetization decay curves. Acad Radiol 2:365–372CrossRefGoogle Scholar
  10. 10.
    Stanisz GJ, Webb S, Munro CA et al (2004) MR properties of excised neural tissue following experimentally induced inflammation. Magn Reson Med 51:473–479.  https://doi.org/10.1002/mrm.20008 CrossRefPubMedGoogle Scholar
  11. 11.
    Mottershead JP, Schmierer K, Clemence M et al (2003) High field MRI correlates of myelin content and axonal density in multiple sclerosis. J Neurol 250:1293–1301.  https://doi.org/10.1007/s00415-003-0192-3 CrossRefPubMedGoogle Scholar
  12. 12.
    Weiskopf N, Mohammadi S, Lutti A, Callaghan MF (2015) Advances in MRI-based computational neuroanatomy. Curr Opin Neurol 28:313–322.  https://doi.org/10.1097/WCO.0000000000000222 CrossRefPubMedGoogle Scholar
  13. 13.
    Groeschel S, Hagberg GE, Schultz T et al (2016) Assessing white matter microstructure in brain regions with different myelin architecture using MRI. PLoS One 11:e0167274.  https://doi.org/10.1371/journal.pone.0167274 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bonnier G, Maréchal B, Fartaria MJ et al (2017) The combined quantification and interpretation of multiple quantitative magnetic resonance imaging metrics enlightens longitudinal changes compatible with brain repair in relapsing–remitting multiple sclerosis patients. Front Neurol 8:506.  https://doi.org/10.3389/fneur.2017.00506 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Schmierer K, Scaravilli F, Altmann DR et al (2004) Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 56:407–415.  https://doi.org/10.1002/ana.20202 CrossRefPubMedGoogle Scholar
  16. 16.
    Schmierer K, Parkes HG, So P-W et al (2010) High field (9.4 T) magnetic resonance imaging of cortical grey matter lesions in multiple sclerosis. Brain 133:858–867.  https://doi.org/10.1093/brain/awp335 CrossRefPubMedGoogle Scholar
  17. 17.
    Tardif CL, Bedell BJ, Eskildsen SF et al (2012) Quantitative magnetic resonance imaging of cortical multiple sclerosis pathology. Mult Scler Int 2012:1–13.  https://doi.org/10.1155/2012/742018 CrossRefGoogle Scholar
  18. 18.
    Bonnier G, Roche A, Romascano D et al (2014) Advanced MRI unravels the nature of tissue alterations in early multiple sclerosis. Ann Clin Transl Neurol 1:423–432.  https://doi.org/10.1002/acn3.68 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Steenwijk MD, Vrenken H, Jonkman LE et al (2016) High-resolution T1-relaxation time mapping displays subtle, clinically relevant, gray matter damage in long-standing multiple sclerosis. Mult Scler 22:1279–1288.  https://doi.org/10.1177/1352458515615953 CrossRefPubMedGoogle Scholar
  20. 20.
    Simioni S, Amarù F, Bonnier G et al (2014) MP2RAGE provides new clinically-compatible correlates of mild cognitive deficits in relapsing–remitting multiple sclerosis. J Neurol 261:1606–1613.  https://doi.org/10.1007/s00415-014-7398-4 CrossRefPubMedGoogle Scholar
  21. 21.
    Bonnier G, Roche A, Romascano D et al (2015) Multicontrast MRI quantification of focal inflammation and degeneration in multiple sclerosis. Biomed Res Int 2015:569123.  https://doi.org/10.1155/2015/569123 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wen J, Yablonskiy DA, Luo J et al (2015) Detection and quantification of regional cortical gray matter damage in multiple sclerosis utilizing gradient echo MRI. NeuroImage Clin 9:164–175.  https://doi.org/10.1016/j.nicl.2015.08.003 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pinter D, Khalil M, Pichler A et al (2015) Predictive value of different conventional and non-conventional MRI-parameters for specific domains of cognitive function in multiple sclerosis. NeuroImage Clin 7:715–720.  https://doi.org/10.1016/j.nicl.2015.02.023 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127CrossRefGoogle Scholar
  25. 25.
    Rao SM (1991) A manual for the brief, repeatable battery of neuropsychological tests in multiple sclerosis. National Multiple Sclerosis Society, New YorkGoogle Scholar
  26. 26.
    Barbarotto R, Laiacona M, Frosio R et al (1998) A normative study on visual reaction times and two Stroop colour-word tests. Ital J Neurol Sci 19:161–170.  https://doi.org/10.1007/BF00831566 CrossRefPubMedGoogle Scholar
  27. 27.
    Amato MP, Portaccio E, Goretti B et al (2006) The Rao’s Brief Repeatable Battery and Stroop test: normative values with age, education and gender corrections in an Italian population. Mult Scler 12:787–793.  https://doi.org/10.1177/1352458506070933 CrossRefPubMedGoogle Scholar
  28. 28.
    Lanzillo R, Orefice G, Quarantelli M et al (2010) Atorvastatin combined to interferon to verify the efficacy (ACTIVE) in relapsing–remitting active multiple sclerosis patients: a longitudinal controlled trial of combination therapy. Mult Scler 16:450–454.  https://doi.org/10.1177/1352458509358909 CrossRefPubMedGoogle Scholar
  29. 29.
    Lanzillo R, Quarantelli M, Pozzilli C et al (2016) No evidence for an effect on brain atrophy rate of atorvastatin add-on to interferon β1b therapy in relapsing–remitting multiple sclerosis (the ARIANNA study). Mult Scler 22:1163–1173.  https://doi.org/10.1177/1352458515611222 CrossRefPubMedGoogle Scholar
  30. 30.
    Alfano B, Brunetti A, Larobina M, et al (2000) Automated segmentation and measurement of global white matter lesion volume in patients with multiple sclerosis. J Magn Reson Imaging 12:799–807. https://doi.org/10.1002/1522-2586(200012)12:6<799::AID-JMRI2>3.0.CO;2-#
  31. 31.
    Prinster A, Quarantelli M, Lanzillo R et al (2010) A voxel-based morphometry study of disease severity correlates in relapsing–remitting multiple sclerosis. Mult Scler 16:45–54.  https://doi.org/10.1177/1352458509351896 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Alfano B, Brunetti A, Ciarmiello A, Salvatore M (1992) Simultaneous display of multiple mr parameters with “quantitative magnetic color imaging. J Comput Assist Tomogr 16:634–640.  https://doi.org/10.1097/00004728-199207000-00025 CrossRefPubMedGoogle Scholar
  33. 33.
    Prinster A, Quarantelli M, Orefice G et al (2006) Grey matter loss in relapsing–remitting multiple sclerosis: a voxel-based morphometry study. NeuroImage 29:859–867.  https://doi.org/10.1016/j.neuroimage.2005.08.034 CrossRefPubMedGoogle Scholar
  34. 34.
    Comi G, Rovaris M, Leocani L et al (2001) Clinical and MRI assessment of brain damage in MS. Neurol Sci 22:S123–S127CrossRefGoogle Scholar
  35. 35.
    Brück W, Bitsch A, Kolenda H et al (1997) Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42:783–793.  https://doi.org/10.1002/ana.410420515 CrossRefPubMedGoogle Scholar
  36. 36.
    McGowan JC, Filippi M, Campi A, Grossman RI (1998) Magnetisation transfer imaging: theory and application to multiple sclerosis. J Neurol Neurosurg Psychiatry 64:S66–S69PubMedGoogle Scholar
  37. 37.
    Tievsky AL, Ptak T, Farkas J (1999) Investigation of apparent diffusion coefficient and diffusion tensor anisotropy in acute and chronic multiple sclerosis lesions. Am J Neuroradiol 20:1491–1499PubMedGoogle Scholar
  38. 38.
    Summers M, Swanton J, Fernando K et al (2008) Cognitive impairment in multiple sclerosis can be predicted by imaging early in the disease. J Neurol Neurosurg Psychiatry 79:955–958.  https://doi.org/10.1136/jnnp.2007.138685 CrossRefPubMedGoogle Scholar
  39. 39.
    Palma G, Tedeschi E, Borrelli P et al (2015) A novel multiparametric approach to 3D quantitative MRI of the brain. PLoS One 10:e0134963.  https://doi.org/10.1371/journal.pone.0134963 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    MacKay AL, Vavasour IM, Rauscher A et al (2009) MR relaxation in multiple sclerosis. Neuroimaging Clin N Am 19:1–26.  https://doi.org/10.1016/j.nic.2008.09.007 CrossRefPubMedGoogle Scholar
  41. 41.
    Laule C, Leung E, Li DK et al (2006) Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult Scler J 12:747–753.  https://doi.org/10.1177/1352458506070928 CrossRefGoogle Scholar
  42. 42.
    Yu HJ, Christodoulou C, Bhise V et al (2012) Multiple white matter tract abnormalities underlie cognitive impairment in RRMS. NeuroImage 59:3713–3722.  https://doi.org/10.1016/j.neuroimage.2011.10.053 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biostructure and Bioimaging InstituteNational Research CouncilNaplesItaly
  2. 2.Department of Neurosciences, Reproductive Science and OdontostomatologyUniversity “Federico II”NaplesItaly

Personalised recommendations