Journal of Neurology

, Volume 266, Issue 1, pp 157–164 | Cite as

Non-invasive evaluation of cerebral perfusion in patients with transient ischemic attack: an fMRI study

  • Yating Lv
  • Wei Wei
  • Yulin Song
  • Yu Han
  • Chengshu Zhou
  • Dan Zhou
  • Fuding Zhang
  • Qiming Xue
  • Jinling Liu
  • Lijuan Zhao
  • Cairong Zhang
  • Lingyu Li
  • Yu-Feng Zang
  • Xiujie HanEmail author
Original Communication


Detection of hypoperfused tissue due to the ischemia is considered to be important in understanding the cerebral perfusion status and may be helpful in guiding therapeutic decisions for patients with transient ischemic attack (TIA). We hypothesized that the combination of two non-invasive fMRI techniques: resting-state BOLD-fMRI time-shift analysis (TSA) approach and 3D ASL, could detect the cerebral hemodynamic status in TIA patients noninvasively. From April 2015 to June 2016, 51 TIA patients were recruited in this study. We calculated the time delay between the resting-state BOLD signal at each voxel and the whole-brain signal using TSA approach and compared the results to CBF map derived from ASL. Out of the 51 patients, 24 patients with normal arrival time and CBF were in Stage 0; 14 patients who showed delayed arrival time and normal CBF which indicated elevated CBV were in Stage I; the other 13 patients who had both delayed arrival time and decreased CBF were in Stage II, the group average spatial overlap, i.e., Dice coefficient, of the two measurements was 0.55. Four patients in Stage 0 (17.4%), three patients in Stage I (23.1%) and five patients in Stage II (45.5%) suffered ischemic stroke or TIA symptoms in 1 year after MRI scan. The patients in Stage II was at highest risk of subsequent events when compared to other two stages. The combination of resting-state BOLD-fMRI and ASL hold the potential to noninvasively identify the hemodynamic status in TIA patients and help predict the risk of subsequent events.


Perfusion Resting-state fMRI Arterial spin labeling Time-shift analysis Transient ischemic attack Cerebral blood flow 



We thank two professional radiologists (Ni Ling and Chen Qian) for helping delineate the data. We thank all the patients and volunteers for participating in this study. This work was supported by grants from National Key R&D Program of China (No. 2017YFC1310000), National Natural Science Foundation of China (No. 81771911, 81301210, 81271652, 81520108016, 31471084, 81661148045), Dr. Zang is partly supported by “Qian Jiang Distinguished Professor” program.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standards

This study was approved by the Ethics Committee of the Center for Cognition and Brain Disorders, Hangzhou Normal University. Written informed consent was obtained from each participant.


  1. 1.
    Easton JD, Saver JL, Albers GW, Alberts MJ, Chaturvedi S, Feldmann E, Hatsukami TS, Higashida RT, Johnston SC, Kidwell CS, Lutsep HL, Miller E, Sacco RL (2009) Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists. Stroke 40:2276–2293. CrossRefGoogle Scholar
  2. 2.
    Giles MF, Rothwell PM (2007) Risk of stroke early after transient ischaemic attack: a systematic review and meta-analysis. Lancet Neurol 6(12):1063–1072. CrossRefGoogle Scholar
  3. 3.
    Johnston SC, Rothwell PM, Nguyen-Huynh MN, Giles MF, Elkins JS, Bernstein AL, Sidney S (2007) Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack. Lancet 369:283–292. CrossRefGoogle Scholar
  4. 4.
    Ay H, Oliveira-Filho J, Buonanno FS, Schaefer PW, Furie KL, Chang YC, Rordorf G, Schwamm LH, Gonzalez RG, Koroshetz WJ (2002) ‘Footprints’ of transient ischemic attacks: a diffusion-weighted MRI study. Cerebrovasc Dis 14:177–186. CrossRefGoogle Scholar
  5. 5.
    Giles MF, Albers GW, Amarenco P, Arsava EM, Asimos AW, Ay H, Calvet D, Coutts SB, Cucchiara BL, Demchuk AM, Johnston SC, Kelly PJ, Kim AS, Labreuche J, Lavallee PC, Mas JL, Merwick A, Olivot JM, Purroy F, Rosamond WD, Sciolla R, Rothwell PM (2011) Early stroke risk and ABCD2 score performance in tissue- vs time-defined TIA: a multicenter study. Neurology 77:1222–1228. CrossRefGoogle Scholar
  6. 6.
    Ay H, Arsava EM, Johnston SC, Vangel M, Schwamm LH, Furie KL, Koroshetz WJ, Sorensen AG (2009) Clinical- and imaging-based prediction of stroke risk after transient ischemic attack: the CIP model. Stroke 40:181–186. CrossRefGoogle Scholar
  7. 7.
    Calvet D, Touze E, Oppenheim C, Turc G, Meder JF, Mas JL (2009) DWI lesions and TIA etiology improve the prediction of stroke after TIA. Stroke 40:187–192. CrossRefGoogle Scholar
  8. 8.
    Coutts SB, Eliasziw M, Hill MD, Scott JN, Subramaniam S, Buchan AM, Demchuk AM (2008) An improved scoring system for identifying patients at high early risk of stroke and functional impairment after an acute transient ischemic attack or minor stroke. Int J Stroke 3:3–10. CrossRefGoogle Scholar
  9. 9.
    Giles MF, Albers GW, Amarenco P, Arsava MM, Asimos A, Ay H, Calvet D, Coutts SB, Cucchiara BL, Demchuk AM, Johnston SC, Kelly PJ, Kim AS, Labreuche J, Lavallee PC, Mas JL, Merwick A, Olivot JM, Purroy F, Rosamond WD, Sciolla R, Rothwell PM (2010) Addition of brain infarction to the ABCD2 Score (ABCD2I): a collaborative analysis of unpublished data on 4574 patients. Stroke 41:1907–1913. CrossRefGoogle Scholar
  10. 10.
    Krol AL, Coutts SB, Simon JE, Hill MD, Sohn CH, Demchuk AM, Group VS (2005) Perfusion MRI abnormalities in speech or motor transient ischemic attack patients. Stroke 36:2487–2489. CrossRefGoogle Scholar
  11. 11.
    Menon BK, Demchuk AM (2011) Computed Tomography angiography in the assessment of patients with stroke/TIA. Neurohospitalist 1:187–199. CrossRefGoogle Scholar
  12. 12.
    Mlynash M, Olivot JM, Tong DC, Lansberg MG, Eyngorn I, Kemp S, Moseley ME, Albers GW (2009) Yield of combined perfusion and diffusion MR imaging in hemispheric TIA. Neurology 72:1127–1133. CrossRefGoogle Scholar
  13. 13.
    Petersen ET, Zimine I, Ho YC, Golay X (2006) Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79:688–701. CrossRefGoogle Scholar
  14. 14.
    Prabhakaran S, Patel SK, Samuels J, McClenathan B, Mohammad Y, Lee VH (2011) Perfusion computed tomography in transient ischemic attack. Arch Neurol 68:85–89. Google Scholar
  15. 15.
    Restrepo L, Jacobs MA, Barker PB, Wityk RJ (2004) Assessment of transient ischemic attack with diffusion- and perfusion-weighted imaging. AJNR Am J Neuroradiol 25:1645–1652Google Scholar
  16. 16.
    Tong T, Yao Z, Feng X (2011) Combined diffusion- and perfusion-weighted imaging: a new way for the assessment of hemispheric transient ischemic attack patients. Int J Dev Neurosci 29:63–69. CrossRefGoogle Scholar
  17. 17.
    Grubb RL Jr, Derdeyn CP, Fritsch SM, Carpenter DA, Yundt KD, Videen TO, Spitznagel EL, Powers WJ (1998) Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA 280:1055–1060CrossRefGoogle Scholar
  18. 18.
    Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16:1236–1249. CrossRefGoogle Scholar
  19. 19.
    Kleinman JT, Zaharchuk G, Mlynash M, Ogdie AA, Straka M, Lansberg MG, Schwartz NE, Kemp S, Bammer R, Albers GW, Olivot JM (2012) Automated perfusion imaging for the evaluation of transient ischemic attack. Stroke 43:1556–1560. CrossRefGoogle Scholar
  20. 20.
    MacIntosh BJ, Lindsay AC, Kylintireas I, Kuker W, Gunther M, Robson MD, Kennedy J, Choudhury RP, Jezzard P (2010) Multiple inflow pulsed arterial spin-labeling reveals delays in the arterial arrival time in minor stroke and transient ischemic attack. AJNR Am J Neuroradiol 31:1892–1894. CrossRefGoogle Scholar
  21. 21.
    Qiao XJ, Salamon N, Wang DJ, He R, Linetsky M, Ellingson BM, Pope WB (2013) Perfusion deficits detected by arterial spin-labeling in patients with TIA with negative diffusion and vascular imaging. AJNR Am J Neuroradiol 34:2125–2130. CrossRefGoogle Scholar
  22. 22.
    Zaharchuk G, Olivot JM, Fischbein NJ, Bammer R, Straka M, Kleinman JT, Albers GW (2012) Arterial spin labeling imaging findings in transient ischemic attack patients: comparison with diffusion- and bolus perfusion-weighted imaging. Cerebrovasc Dis 34:221–228. CrossRefGoogle Scholar
  23. 23.
    Derdeyn CP, Grubb RL, Powers WJ (1999) Cerebral hemodynamic impairment: methods of measurement and association with stroke risk. Neurology 53:251–259. CrossRefGoogle Scholar
  24. 24.
    Kroll H, Zaharchuk G, Christen T, Heit JJ, Iv M (2017) Resting-state BOLD MRI for perfusion and ischemia. Top Magn Reson Imaging 26:91–96. CrossRefGoogle Scholar
  25. 25.
    Khalil AA, Ostwaldt AC, Nierhaus T, Ganeshan R, Audebert HJ, Villringer K, Villringer A, Fiebach JB (2017) Relationship between changes in the temporal dynamics of the blood-oxygen-level-dependent signal and hypoperfusion in acute ischemic stroke. Stroke 48:925–931. CrossRefGoogle Scholar
  26. 26.
    Lv Y, Margulies DS, Cameron Craddock R, Long X, Winter B, Gierhake D, Endres M, Villringer K, Fiebach J, Villringer A (2013) Identifying the perfusion deficit in acute stroke with resting-state functional magnetic resonance imaging. Ann Neurol 73:136–140. CrossRefGoogle Scholar
  27. 27.
    Ni L, Li J, Li W, Zhou F, Wang F, Schwarz CG, Liu R, Zhao H, Wu W, Zhang X, Li M, Yu H, Zhu B, Villringer A, Zang Y, Zhang B, Lv Y, Xu Y (2017) The value of resting-state functional MRI in subacute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced perfusion MRI. Sci Rep 7:41586. CrossRefGoogle Scholar
  28. 28.
    Amemiya S, Kunimatsu A, Saito N, Ohtomo K (2014) Cerebral hemodynamic impairment: assessment with resting-state functional MR imaging. Radiology 270:548–555. CrossRefGoogle Scholar
  29. 29.
    Schultz-Larsen K, Lomholt RK, Kreiner S (2007) Mini-mental status examination: a short form of MMSE was as accurate as the original MMSE in predicting dementia. J Clin Epidemiol 60:260–267. CrossRefGoogle Scholar
  30. 30.
    Biswal B, Hudetz AG, Yetkin FZ, Haughton VM, Hyde JS (1997) Hypercapnia reversibly suppresses low-frequency fluctuations in the human motor cortex during rest using echo-planar MRI. J Cereb Blood Flow Metab 17:301–308. CrossRefGoogle Scholar
  31. 31.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682. CrossRefGoogle Scholar
  32. 32.
    Villringer A, Dirnagl U (1995) Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev 7:240–276Google Scholar
  33. 33.
    Bonakdarpour B, Parrish TB, Thompson CK (2007) Hemodynamic response function in patients with stroke-induced aphasia: implications for fMRI data analysis. Neuroimage 36:322–331. CrossRefGoogle Scholar
  34. 34.
    Rossini PM, Altamura C, Ferretti A, Vernieri F, Zappasodi F, Caulo M, Pizzella V, Del Gratta C, Romani GL, Tecchio F (2004) Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics? Brain 127:99–110. CrossRefGoogle Scholar
  35. 35.
    Jansen O, Schellinger P, Fiebach J, Hacke W, Sartor K (1999) Early recanalisation in acute ischaemic stroke saves tissue at risk defined by MRI. Lancet 353:2036–2037. CrossRefGoogle Scholar
  36. 36.
    Ji R, Schwamm LH, Pervez MA, Singhal AB (2013) Ischemic stroke and transient ischemic attack in young adults: risk factors, diagnostic yield, neuroimaging, and thrombolysis. JAMA Neurol 70:51–57. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yating Lv
    • 1
    • 2
    • 3
  • Wei Wei
    • 1
    • 2
    • 3
  • Yulin Song
    • 3
  • Yu Han
    • 4
  • Chengshu Zhou
    • 3
  • Dan Zhou
    • 3
  • Fuding Zhang
    • 3
  • Qiming Xue
    • 5
  • Jinling Liu
    • 6
  • Lijuan Zhao
    • 3
  • Cairong Zhang
    • 3
  • Lingyu Li
    • 1
    • 2
    • 3
  • Yu-Feng Zang
    • 1
    • 2
    • 3
  • Xiujie Han
    • 3
    Email author
  1. 1.Institutes of Psychological SciencesHangzhou Normal UniversityHangzhouChina
  2. 2.Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina
  3. 3.Department of NeurologyAnshan Changda HospitalAnshanChina
  4. 4.Department of Neurologythe First Affiliated Hospital, Dalian Medical UniversityDalianChina
  5. 5.Department of ImageAnshan Changda HospitalAnshanChina
  6. 6.Department of UltrasonicsAnshan Changda HospitalAnshanChina

Personalised recommendations