Advertisement

Compromised tDCS-induced facilitation of motor consolidation in patients with multiple sclerosis

  • Jost-Julian Rumpf
  • Sophie Dietrich
  • Muriel Stoppe
  • Christopher Fricke
  • David Weise
  • Florian Then Bergh
  • Joseph Classen
Original Communication

Abstract

Objective

To investigate whether consolidation after motor learning can be facilitated by offline (post-training) transcranial direct current stimulation (tDCS) in patients with multiple sclerosis (MS).

Methods

In this cross-sectional double-blind interventional study, effects of tDCS on motor consolidation were examined in 14 patients with relapsing remitting MS [median Expanded Disability Status Scale score 2.0 (range 1–4)] and 14 age- and sex-matched healthy controls. tDCS with the anode placed over the left primary motor cortex and the cathode placed over the right supraorbital region was applied immediately after a training session of an explicit sequential finger-tapping task that was performed with the right (dominant) hand. Task performance was retested after an interval of 8 h to assess consolidation. Participants took part in two experimental sessions separated by at least 7 days which differed with respect to type of post-training tDCS, i.e., sham and verum stimulation.

Results

Patients with MS performed worse than controls in functional motor tests and the motor sequence task. However, learning speed and magnitude of online performance increments during the training session were comparable to controls. While post-training tDCS facilitated motor consolidation in controls, patients with MS did not benefit from this type of intervention.

Conclusion

Absence of post-training tDCS-induced facilitation of consolidation in patients with MS suggests that the interaction of tDCS with the motor consolidation network is inefficient. Identification of the underlying disease-related mechanisms will have important implications for the design of studies aiming to promote motor recovery in MS by non-invasive brain stimulation.

Keywords

Motor learning Motor consolidation Multiple sclerosis Transcranial direct current stimulation 

Notes

Author contributions

J-JR: designed and conceptualized study; analyzed the data; interpreted the data; drafted the manuscript for intellectual content. SD: major role in the acquisition of data; revised the manuscript for intellectual content. MS: designed and conceptualized study; revised the manuscript for intellectual content. CF: analyzed the data; revised the manuscript for intellectual content. DW: revised the manuscript for intellectual content. FTB: revised the manuscript for intellectual content. JC: designed and conceptualized study; revised the manuscript for intellectual content.

Funding

No industry, government or institutional funding was received for this research.

Compliance with ethical standards

Conflict of interest

All authors declare no support from any organization for the submitted work, no financial relationships with any organizations that might have an interest in the submitted work, and no other relationships or activities that could appear to have influenced the submitted work.

Ethical standard

Ethics approval was provided by the institutional ethical standards committee on human experimentation at the University of Leipzig (371/14-ek). All participants provided written informed consent before the conduct of any study-related procedures.

References

  1. 1.
    Hauser SL, Oksenberg JR (2006) The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 52(1):61–76.  https://doi.org/10.1016/j.neuron.2006.09.011 CrossRefPubMedGoogle Scholar
  2. 2.
    Waxman SG (2006) Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 7(12):932–941.  https://doi.org/10.1038/nrn2023 CrossRefPubMedGoogle Scholar
  3. 3.
    Fox RJ, Cronin T, Lin J, Wang X, Sakaie K, Ontaneda D, Mahmoud SY, Lowe MJ, Phillips MD (2011) Measuring Myelin Repair and Axonal Loss with Diffusion Tensor Imaging. Am J Neuroradiol 32(1):85–91.  https://doi.org/10.3174/ajnr.A2238 CrossRefPubMedGoogle Scholar
  4. 4.
    Zeller D, Classen J (2014) Plasticity of the Motor System in Multiple Sclerosis. Neuroscience 283:222–230.  https://doi.org/10.1016/j.neuroscience.2014.05.043 CrossRefPubMedGoogle Scholar
  5. 5.
    Doyon J, Penhune V, Ungerleider LG (2003) Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia 41(3):252–262CrossRefPubMedGoogle Scholar
  6. 6.
    Hadipour-Niktarash A, Lee CK, Desmond JE, Shadmehr R (2007) Impairment of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary motor cortex. J Neurosci 27(49):13413–13419.  https://doi.org/10.1523/JNEUROSCI.2570-07.2007 CrossRefPubMedGoogle Scholar
  7. 7.
    Muellbacher W, Ziemann U, Wissel J, Dang N, Kofler M, Facchini S, Boroojerdi B, Poewe W, Hallett M (2002) Early consolidation in human primary motor cortex. Nature 415(6872):640–644.  https://doi.org/10.1038/nature712 CrossRefPubMedGoogle Scholar
  8. 8.
    Robertson EM, Press DZ, Pascual-Leone A (2005) Off-line learning and the primary motor cortex. J Neurosci 25(27):6372–6378.  https://doi.org/10.1523/JNEUROSCI.1851-05.2005 CrossRefPubMedGoogle Scholar
  9. 9.
    Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, Ungerleider LG (1998) The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex. P Natl Acad Sci USA 95(3):861–868.  https://doi.org/10.1073/pnas.95.3.861 CrossRefGoogle Scholar
  10. 10.
    Censor N, Sagi D, Cohen LG (2012) Common mechanisms of human perceptual and motor learning. Nat Rev Neurosci 13(9):658–664.  https://doi.org/10.1038/nrn3315 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zeller D, Kampe KA, Biller A, Stefan K, Gentner R, Schutz A, Bartsch A, Bendszus M, Toyka KV, Rieckmann P, Classen J (2010) Rapid-onset central motor plasticity in multiple sclerosis. Neurology 74(9):728–735.  https://doi.org/10.1212/WNL.0b013e3181d31dcf CrossRefPubMedGoogle Scholar
  12. 12.
    Tomassini V, Johansen-Berg H, Leonardi L, Paixao L, Jbabdi S, Palace J, Pozzilli C, Matthews PM (2011) Preservation of motor skill learning in patients with multiple sclerosis. Mult Scler J 17(1):103–115.  https://doi.org/10.1177/1352458510381257 CrossRefGoogle Scholar
  13. 13.
    Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol Lond 527(3):633–639.  https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Buch ER, Santarnecchi E, Antal A, Born J, Celnik PA, Classen J, Gerloff C, Hallett M, Hummel FC, Nitsche MA, Pascual-Leone A, Paulus WJ, Reis J, Robertson EM, Rothwell JC, Sandrini M, Schambra HM, Wassermann EM, Ziemann U, Cohen LG (2017) Effects of tDCS on motor learning and memory formation: a consensus and critical position paper. Clin Neurophysiol 128(4):589–603.  https://doi.org/10.1016/j.clinph.2017.01.004 CrossRefPubMedGoogle Scholar
  15. 15.
    Antal A, Nitsche MA, Kincses TZ, Kruse W, Hoffmann KP, Paulus W (2004) Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. Eur J Neurosci 19(10):2888–2892.  https://doi.org/10.1111/j.1460-9568.2004.03367.x CrossRefPubMedGoogle Scholar
  16. 16.
    Hummel FC, Heise K, Celnik P, Floel A, Gerloff C, Cohen LG (2010) Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex. Neurobiol Aging 31(12):2160–2168.  https://doi.org/10.1016/j.neurobiolaging.2008.12.008 CrossRefPubMedGoogle Scholar
  17. 17.
    Zimerman M, Nitsch M, Giraux P, Gerloff C, Cohen LG, Hummel FC (2013) Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Ann Neurol 73(1):10–15.  https://doi.org/10.1002/ana.23761 CrossRefPubMedGoogle Scholar
  18. 18.
    Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, Tergau F (2003) Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci 15(4):619–626.  https://doi.org/10.1162/089892903321662994 CrossRefPubMedGoogle Scholar
  19. 19.
    Hamoudi M, Schambra HM, Fritsch B, Schoechlin-Marx A, Weiller C, Cohen LG, Reis J (2018) Transcranial direct current stimulation enhances motor skill learning but not generalization in chronic stroke. Neurorehabil Neural Repair.  https://doi.org/10.1177/1545968318769164 (1545968318769164) PubMedGoogle Scholar
  20. 20.
    Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, Celnik PA, Krakauer JW (2009) Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci USA 106(5):1590–1595.  https://doi.org/10.1073/pnas.0805413106 CrossRefPubMedGoogle Scholar
  21. 21.
    Reis J, Fischer JT, Prichard G, Weiller C, Cohen LG, Fritsch B (2015) Time-but not sleep-dependent consolidation of tDCS-enhanced visuomotor skills. Cereb Cortex 25(1):109–117.  https://doi.org/10.1093/cercor/bht208 CrossRefPubMedGoogle Scholar
  22. 22.
    Tecchio F, Zappasodi F, Assenza G, Tombini M, Vollaro S, Barbati G, Rossini PM (2010) Anodal transcranial direct current stimulation enhances procedural consolidation. J Neurophysiol 104(2):1134–1140.  https://doi.org/10.1152/jn.00661.2009 CrossRefPubMedGoogle Scholar
  23. 23.
    Krause V, Meier A, Dinkelbach L, Pollok B (2016) Beta band transcranial alternating (tACS) and direct current stimulation (tDCS) applied after initial learning facilitate retrieval of a motor sequence. Front Behav Neurosci.  https://doi.org/10.3389/fnbeh.2016.00004 PubMedPubMedCentralGoogle Scholar
  24. 24.
    Rumpf JJ, Wegscheider M, Hinselmann K, Fricke C, King BR, Weise D, Klann J, Binkofski F, Buccino G, Karni A, Doyon J, Classen J (2017) Enhancement of motor consolidation by post-training transcranial direct current stimulation in older people. Neurobiol Aging 49:1–8.  https://doi.org/10.1016/j.neurobiolaging.2016.09.003 CrossRefPubMedGoogle Scholar
  25. 25.
    King BR, Fogel SM, Albouy G, Doyon J (2013) Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults. Front Hum Neurosci.  https://doi.org/10.3389/fnhum.2013.00142 Google Scholar
  26. 26.
    Kurtzke JF (1983) Rating neurologic impairment in multiple-sclerosis—an expanded disability status scale (Edss). Neurology 33(11):1444–1452. doi: https://doi.org/10.1212/Wnl.33.11.1444 CrossRefPubMedGoogle Scholar
  27. 27.
    Fischer JS, Rudick RA, Cutter GR, Reingold SC, Assessment NMSCO (1999) The multiple sclerosis functional composite measure (MSFC): an integrated approach to MS clinical outcome assessment. Mult Scler 5(4):244–250. doi: https://doi.org/10.1177/135245859900500409 CrossRefPubMedGoogle Scholar
  28. 28.
    Smith A (1968) The symbol-digit modalities test: a neuropsychologic test of learning and other cerebral disorders. In: Helmuth J (ed) Learning disorders. Special Child Publications, Seattle, pp 83–91Google Scholar
  29. 29.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302.  https://doi.org/10.1002/ana.22366 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Beck AT, Steer RA, Ball R, Ranieri W (1996) Comparison of beck depression inventories-IA and -II in psychiatric outpatients. J Pers Assess 67(3):588–597.  https://doi.org/10.1207/s15327752jpa6703_13 CrossRefPubMedGoogle Scholar
  31. 31.
    Cui RQ, Huter D, Egkher A, Lang W, Lindinger G, Deecke L (2000) High resolution DC-EEG mapping of the Bereitschaftspotential preceding simple or complex bimanual sequential finger movement. Exp Brain Res 134(1):49–57CrossRefPubMedGoogle Scholar
  32. 32.
    Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul 1(3):206–223.  https://doi.org/10.1016/j.brs.2008.06.004 pii .CrossRefPubMedGoogle Scholar
  33. 33.
    Gandiga PC, Hummel FC, Cohen LG (2006) Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 117(4):845–850.  https://doi.org/10.1016/j.clinph.2005.12.003 pii].CrossRefPubMedGoogle Scholar
  34. 34.
    King BR, Saucier P, Albouy G, Fogel SM, Rumpf JJ, Klann J, Buccino G, Binkofski F, Classen J, Karni A, Doyon J (2017) Cerebral activation during initial motor learning forecasts subsequent sleep-facilitated memory consolidation in older adults. Cereb Cortex 27(2):1588–1601.  https://doi.org/10.1093/cercor/bhv347 PubMedGoogle Scholar
  35. 35.
    Robertson EM, Pascual-Leone A, Miall RC (2004) Current concepts in procedural consolidation. Nat Rev Neurosci 5(7):576–582.  https://doi.org/10.1038/nrn1426 CrossRefPubMedGoogle Scholar
  36. 36.
    Leocani L, Comi E, Annovazzi P, Rovaris M, Rossi P, Cursi M, Comola M, Martinelli V, Comi G (2007) Impaired short-term motor learning in multiple sclerosis: evidence from virtual reality. Neurorehabil Neural Repair 21(3):273–278.  https://doi.org/10.1177/1545968306294913 CrossRefPubMedGoogle Scholar
  37. 37.
    Mancini L, Ciccarelli O, Manfredonia F, Thornton JS, Agosta F, Barkhof F, Beckmann C, De Stefano N, Enzinger C, Fazekas F, Filippi M, Gass A, Hirsch JG, Johansen-Berg H, Kappos L, Korteweg T, Manson SC, Marino S, Matthews PM, Montalban X, Palace J, Polman C, Rocca M, Ropele S, Rovira A, Wegner C, Friston K, Thompson A, Yousry T (2009) Short-term adaptation to a simple motor task: a physiological process preserved in multiple sclerosis. Neuroimage 45(2):500–511.  https://doi.org/10.1016/j.neuroimage.2008.12.006 CrossRefPubMedGoogle Scholar
  38. 38.
    Bonzano L, Tacchino A, Roccatagliata L, Sormani MP, Mancardi GL, Bove M (2011) Impairment in explicit visuomotor sequence learning is related to loss of microstructural integrity of the corpus callosum in multiple sclerosis patients with minimal disability. Neuroimage 57(2):495–501.  https://doi.org/10.1016/j.neuroimage.2011.04.037 CrossRefPubMedGoogle Scholar
  39. 39.
    Tacchino A, Bove M, Roccatagliata L, Luigi Mancardi G, Uccelli A, Bonzano L (2014) Selective impairments of motor sequence learning in multiple sclerosis patients with minimal disability. Brain Res 1585:91–98.  https://doi.org/10.1016/j.brainres.2014.08.031 CrossRefPubMedGoogle Scholar
  40. 40.
    Meesen RLJ, Thijs H, Leenus DJF, Cuypers K (2014) A single session of 1 mA anodal tDCS-supported motor training does not improve motor performance in patients with multiple sclerosis. Restor Neurol Neuros 32(2):293–300.  https://doi.org/10.3233/Rnn-130348 Google Scholar
  41. 41.
    Cuypers K, Leenus DJ, van den Berg FE, Nitsche MA, Thijs H, Wenderoth N, Meesen RL (2013) Is motor learning mediated by tDCS intensity? PLoS One 8(6):e67344.  https://doi.org/10.1371/journal.pone.0067344 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Stagg CJ, Jayaram G, Pastor D, Kincses ZT, Matthews PM, Johansen-Berg H (2011) Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia 49(5):800–804.  https://doi.org/10.1016/j.neuropsychologia.2011.02.009 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zeller D, Dang SY, Weise D, Rieckmann P, Toyka KV, Classen J (2012) Excitability decreasing central motor plasticity is retained in multiple sclerosis patients. BMC Neurol 12:92.  https://doi.org/10.1186/1471-2377-12-92 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cuypers K, Leenus DJF, Van Wijmeersch B, Thijs H, Levin O, Swinnen SP, Meesen RLJ (2013) Anodal tDCS increases corticospinal output and projection strength in multiple sclerosis. Neurosci Lett 554:151–155.  https://doi.org/10.1016/j.neulet.2013.09.004 CrossRefPubMedGoogle Scholar
  45. 45.
    Hardwick RM, Rottschy C, Miall RC, Eickhoff SB (2013) A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage 67:283–297.  https://doi.org/10.1016/j.neuroimage.2012.11.020 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Albouy G, Sterpenich V, Balteau E, Vandewalle G, Desseilles M, Dang-Vu T, Darsaud A, Ruby P, Luppi PH, Degueldre C, Peigneux P, Luxen A, Maquet P (2008) Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron 58(2):261–272.  https://doi.org/10.1016/j.neuron.2008.02.008 CrossRefPubMedGoogle Scholar
  47. 47.
    Debas K, Carrier J, Orban P, Barakat M, Lungu O, Vandewalle G, Hadj Tahar A, Bellec P, Karni A, Ungerleider LG, Benali H, Doyon J (2010) Brain plasticity related to the consolidation of motor sequence learning and motor adaptation. Proc Natl Acad Sci USA 107(41):17839–17844.  https://doi.org/10.1073/pnas.1013176107 CrossRefPubMedGoogle Scholar
  48. 48.
    Debas K, Carrier J, Barakat M, Marrelec G, Bellec P, Hadj Tahar A, Karni A, Ungerleider LG, Benali H, Doyon J (2014) Off-line consolidation of motor sequence learning results in greater integration within a cortico-striatal functional network. Neuroimage 99:50–58.  https://doi.org/10.1016/j.neuroimage.2014.05.022 CrossRefPubMedGoogle Scholar
  49. 49.
    Krause MR, Zanos TP, Csorba BA, Pilly PK, Choe J, Phillips ME, Datta A, Pack CC (2017) Transcranial direct current stimulation facilitates associative learning and alters functional connectivity in the primate brain. Curr Biol 27(20):3086–3096 e3083.  https://doi.org/10.1016/j.cub.2017.09.020 CrossRefPubMedGoogle Scholar
  50. 50.
    Stampanoni Bassi M, Gilio L, Buttari F, Maffei P, Marfia GA, Restivo DA, Centonze D, Iezzi E (2017) Remodeling functional connectivity in multiple sclerosis: a challenging therapeutic approach. Front Neurosci 11:710.  https://doi.org/10.3389/fnins.2017.00710 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of LeipzigLeipzigGermany

Personalised recommendations