Journal of Neurology

, Volume 264, Issue 11, pp 2277–2283 | Cite as

Absence of clinical cerebellar syndrome after serial injections of more than 20 doses of gadoterate, a macrocyclic GBCA: a monocenter retrospective study

  • Gaetano Perrotta
  • Thierry Metens
  • Julie Absil
  • Marc Lemort
  • Mario Manto
Original Communication


Sound evidence of gadolinium accumulation in brain has been recently provided after repeated administrations of linear gadolinium-based contrast agents (GBCAs), especially at the cerebellum level. Although data regarding brain accumulation of macrocyclic GBCAs are more reassuring, there is now a genuine concern (“gadolinium-phobia”) about possible long-term consequences of gadolinium deposits, especially in terms of cerebellar sequelae. We, therefore, questioned about the clinical impact of serial administration of gadoterate meglumine, a macrocyclic GBCA. In this retrospective study (2000–2016) of medical files of patients who received more than 20 administrations of gadoterate, we searched for cerebellar symptoms and signs developing during the regular follow-up. We reviewed medical files of ten patients (mean age 34.4 ± 20.8 years; 4 males, 6 females) who received 28.2 ± 5.3 doses of gadoterate (average total dose of GBCA 518 ± 226 ml; range 185–785 ml). Patients were examined by at least two medical specialists depending on initial diagnosis, and at least once by a neurosurgeon. Mean follow-up time was 91 months (range 49–168) and six out of ten patients experienced new symptoms or signs. No clinician reported the appearance of a rising cerebellar syndrome, nor newly appeared symptoms or signs suggested cerebellar toxicity. This retrospective clinical study shows no de novo clinical cerebellar syndrome following repeated administrations of gadoterate. Our results argue against a cerebellar toxicity of this macrocyclic agent. Still, confirmation in a larger number of subjects is required, as well as clinical studies concerning linear GBCAs whose structure and in vivo stability are distinct.


Gadolinium deposition Macrocyclic Linear Brain deposits Basal ganglia Toxic cerebellar syndrome 



GP is Ph.D. student at the Faculty of Medicine, ULB-Erasme. MM is supported by the FNRS-Belgium and the Fonds Erasme.

Compliance with ethical standards

Conflicts of interest

MM has interacted with Guerbet (France) to design experimental studies on the mechanisms of deposits of gadolinium chelates in the rodent brain.

Ethical standards

This retrospective study was approved by the Ethical Committee of the ULB-Erasme Hospital.

Supplementary material

415_2017_8631_MOESM1_ESM.docx (5.2 mb)
Supplementary material 1 (DOCX 5353 kb)


  1. 1.
    Agris J, Pietsch H, Balzer T (2016) What evidence is there that gadobutrol causes increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W MRI in patients with RRMS? Eur Radiol 26:816–817. doi: 10.1007/s00330-015-4019-2 CrossRefPubMedGoogle Scholar
  2. 2.
    Bauer K, Lathrum A, Raslan O, Kelly PV, Zhou Y, Hewing D, Botkin C, Turner JA, Osman M (2017) Do gadolinium-based contrast agents affect (18)F-FDG PET/CT uptake in the dentate nucleus and the globus pallidus? A pilot study. J Nucl Med Technol 45:302–305. doi: 10.2967/jnmt.116.180844 CrossRefGoogle Scholar
  3. 3.
    Burke LMB, Ramalho M, AlObaidy M, Chang E, Jay M, Semelka RC (2016) Self-reported gadolinium toxicity: a survey of patients with chronic symptoms. Magn Reson Imaging 34:1078–1080. doi: 10.1016/j.mri.2016.05.005 CrossRefPubMedGoogle Scholar
  4. 4.
    Cao Y, Huang DQ, Shih G, Prince MR (2016) Signal change in the dentate nucleus on T1-weighted MR images after multiple administrations of gadopentetate dimeglumine versus gadobutrol. AJR Am J Roentgenol 206:414–419. doi: 10.2214/AJR.15.15327 CrossRefPubMedGoogle Scholar
  5. 5.
    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41CrossRefPubMedGoogle Scholar
  6. 6.
    Grobner T, Prischl FC (2007) Gadolinium and nephrogenic systemic fibrosis. Kidney Int 72:260–264. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  7. 7.
    Hao D, Ai T, Goerner F, Hu X, Runge VM, Tweedle M (2012) MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging JMRI 36:1060–1071. doi: 10.1002/jmri.23725 CrossRefPubMedGoogle Scholar
  8. 8.
    Higashi M, Irioka T, Matsumoto T, Mizusawa H (2013) Metronidazole-induced encephalopathy. Intern Med Tokyo Jpn 52:843–844CrossRefGoogle Scholar
  9. 9.
    High WA, Ayers RA, Chandler J, Zito G, Cowper SE (2007) Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol 56:21–26. doi: 10.1016/j.jaad.2006.10.047 CrossRefPubMedGoogle Scholar
  10. 10.
    Hu HH, Pokorney A, Towbin RB, Miller JH (2016) Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams. Pediatr Radiol 46:1590–1598. doi: 10.1007/s00247-016-3646-3 CrossRefPubMedGoogle Scholar
  11. 11.
    Hui FK, Mullins M (2009) Persistence of gadolinium contrast enhancement in CSF: a possible harbinger of gadolinium neurotoxicity? AJNR Am J Neuroradiol 30:E1. doi: 10.3174/ajnr.A1205 CrossRefPubMedGoogle Scholar
  12. 12.
    Kanda T, Fukusato T, Matsuda M, Toyoda K, Oba H, Kotoku J, Haruyama T, Kitajima K, Furui S (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276:228–232CrossRefPubMedGoogle Scholar
  13. 13.
    Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841. doi: 10.1148/radiol.13131669 CrossRefPubMedGoogle Scholar
  14. 14.
    Kanda T, Osawa M, Oba H, Toyoda K, Kotoku JI, Haruyama T, Takeshita K, Furui S (2015) High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275:803–809. doi: 10.1148/radiol.14140364 CrossRefPubMedGoogle Scholar
  15. 15.
    Lohrke J, Frisk A-L, Frenzel T, Schöckel L, Rosenbruch M, Jost G, Lenhard DC, Sieber MA, Nischwitz V, Küppers A, Pietsch H (2017) Histology and gadolinium distribution in the rodent brain after the administration of cumulative high doses of linear and macrocyclic gadolinium-based contrast agents. Invest Radiol. doi: 10.1097/RLI.0000000000000344 Google Scholar
  16. 16.
    Manto M (2012) Toxic agents causing cerebellar ataxias. Handb Clin Neurol 103:201–213. doi: 10.1016/B978-0-444-51892-7.00012-7 CrossRefPubMedGoogle Scholar
  17. 17.
    Manto M, Mariën P (2015) Schmahmann’s syndrome—identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias 2:2. doi: 10.1186/s40673-015-0023-1 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Maramattom BV, Manno EM, Wijdicks EFM, Lindell EP (2005) Gadolinium encephalopathy in a patient with renal failure. Neurology 64:1276–1278. doi: 10.1212/01.WNL.0000156805.45547.6E CrossRefPubMedGoogle Scholar
  19. 19.
    McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782. doi: 10.1148/radiol.15150025 CrossRefPubMedGoogle Scholar
  20. 20.
    Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, Maravilla KR (2016) Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol 51:447–453. doi: 10.1097/RLI.0000000000000252 CrossRefPubMedGoogle Scholar
  21. 21.
    Radbruch A, Haase R, Kieslich PJ, Weberling LD, Kickingereder P, Wick W, Schlemmer H-P, Bendszus M (2017) No signal intensity increase in the dentate nucleus on unenhanced T1-weighted MR images after more than 20 serial injections of macrocyclic gadolinium-based contrast agents. Radiology 282:699–707. doi: 10.1148/radiol.2016162241 CrossRefPubMedGoogle Scholar
  22. 22.
    Radbruch A, Weberling LD, Kieslich PJ, Eidel O, Burth S, Kickingereder P, Heiland S, Wick W, Schlemmer H-P, Bendszus M (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275:783–791. doi: 10.1148/radiol.2015150337 CrossRefPubMedGoogle Scholar
  23. 23.
    Ramalho J, Ramalho M, Jay M, Burke LM, Semelka RC (2016) Gadolinium toxicity and treatment. Magn Reson Imaging 34:1394–1398. doi: 10.1016/j.mri.2016.09.005 CrossRefPubMedGoogle Scholar
  24. 24.
    Ramalho J, Semelka RC, AlObaidy M, Ramalho M, Nunes RH, Castillo M (2016) Signal intensity change on unenhanced T1-weighted images in dentate nucleus following gadobenate dimeglumine in patients with and without previous multiple administrations of gadodiamide. Eur Radiol 26:4080–4088. doi: 10.1007/s00330-016-4269-7 CrossRefPubMedGoogle Scholar
  25. 25.
    Ray DE, Holton JL, Nolan CC, Cavanagh JB, Harpur ES (1998) Neurotoxic potential of gadodiamide after injection into the lateral cerebral ventricle of rats. AJNR Am J Neuroradiol 19:1455–1462PubMedGoogle Scholar
  26. 26.
    Robert P, Lehericy S, Grand S, Violas X, Fretellier N, Idée J-M, Ballet S, Corot C (2015) T1-weighted hypersignal in the deep cerebellar nuclei after repeated administrations of gadolinium-based contrast agents in healthy rats: difference between linear and macrocyclic agents. Invest Radiol 50:473–480. doi: 10.1097/RLI.0000000000000181 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Roberts DR, Welsh CA, LeBel DP, Davis WC (2017) Distribution map of gadolinium deposition within the cerebellum following GBCA administration. Neurology 88:1206–1208. doi: 10.1212/WNL.0000000000003735 CrossRefPubMedGoogle Scholar
  28. 28.
    Runge VM (2000) Safety of approved MR contrast media for intravenous injection. J Magn Reson Imaging JMRI 12:205–213CrossRefPubMedGoogle Scholar
  29. 29.
    Schwartz GJ, Gauthier B (1985) A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr 106:522–526CrossRefPubMedGoogle Scholar
  30. 30.
    Semelka RC, Ramalho J, Vakharia A, AlObaidy M, Burke LM, Jay M, Ramalho M (2016) Gadolinium deposition disease: initial description of a disease that has been around for a while. Magn Reson Imaging 34:1383–1390. doi: 10.1016/j.mri.2016.07.016 CrossRefPubMedGoogle Scholar
  31. 31.
    Stojanov DA, Aracki-Trenkic A, Vojinovic S, Benedeto-Stojanov D, Ljubisavljevic S (2016) Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur Radiol 26:807–815. doi: 10.1007/s00330-015-3879-9 CrossRefPubMedGoogle Scholar
  32. 32.
    Woodruff BK, Wijdicks EFM, Marshall WF (2002) Reversible metronidazole-induced lesions of the cerebellar dentate nuclei. N Engl J Med 346:68–69. doi: 10.1056/NEJM200201033460117 CrossRefPubMedGoogle Scholar
  33. 33.
    Zhou Z, Lu Z-R (2013) Gadolinium-based contrast agents for MR cancer imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:1–18. doi: 10.1002/wnan.1198 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Gaetano Perrotta
    • 1
  • Thierry Metens
    • 2
  • Julie Absil
    • 2
  • Marc Lemort
    • 3
  • Mario Manto
    • 4
  1. 1.Service de NeurologieULB-Hôpital ErasmeBrusselsBelgium
  2. 2.Service de NeuroimagerieULB-Hôpital ErasmeBrusselsBelgium
  3. 3.Service de RadiologieInstitut BordetBrusselsBelgium
  4. 4.FNRS, ULB-Hôpital ErasmeBrusselsBelgium

Personalised recommendations