Comorbidity of dementia with amyotrophic lateral sclerosis (ALS): insights from a large multicenter Italian cohort

  • Francesca Trojsi
  • Mattia Siciliano
  • Cinzia Femiano
  • Gabriella Santangelo
  • Christian Lunetta
  • Andrea Calvo
  • Cristina Moglia
  • Kalliopi Marinou
  • Nicola Ticozzi
  • Gianluca Drago Ferrante
  • Carlo Scialò
  • Gianni Sorarù
  • Amelia Conte
  • Yuri M. Falzone
  • Rosanna Tortelli
  • Massimo Russo
  • Valeria Ada Sansone
  • Adriano Chiò
  • Gabriele Mora
  • Barbara Poletti
  • Paolo Volanti
  • Claudia Caponnetto
  • Giorgia Querin
  • Mario Sabatelli
  • Nilo Riva
  • Giancarlo Logroscino
  • Sonia Messina
  • Antonio Fasano
  • Maria Rosaria Monsurrò
  • Gioacchino Tedeschi
  • Jessica Mandrioli
Original Communication

Abstract

To assess the association, at diagnosis, between amyotrophic lateral sclerosis (ALS) and dementia in a large cohort of well-characterized Italian patients. We investigated the phenotypic profile of 1638 incident patients with definite, probable or laboratory-supported probable ALS, diagnosed from January 2009 to December 2013 in 13 Italian Referral Centers, located in 10 Italian Regions, and classified in two independent subsamples accounting for presence or not of dementia. The collected ALS features, including survival and other follow-up data, were compared between the two subgroups using a one-way analysis of variance and Chi-square test, as appropriate, logistic regression models and Kaplan–Meier survival analysis. Between-subgroup comparisons showed an older age at clinical observation (p = .006), at onset and at diagnosis (p = .002) in demented versus non demented ALS patients. After adjustment for these variables, diagnosis of dementia was significantly associated with higher odds of family history of ALS (p = .001) and frontotemporal dementia (p = .003) and of bulbar onset (p = .004), and lower odds of flail leg phenotype (p = .019) and spinal onset (p = .008). The median survival time was shorter in demented versus non-demented patients, especially in case of classical, bulbar and flail limb phenotypes and both bulbar and spinal onset. Our multicenter study emphasized the importance of an early diagnosis of comorbid dementia in ALS patients, which may have clinical impact and prognostic relevance. Moreover, our results may give further inputs to validation of ALS-specific tools for the screening of cognitive impairment in clinical practice.

Keywords

Amyotrophic lateral sclerosis Dementia Clinical phenotype Survival 

Supplementary material

415_2017_8619_MOESM1_ESM.doc (26 kb)
Supplementary material 1 (DOC 26 kb)

References

  1. 1.
    Turner MR, Swash M (2015) The expanding syndrome of amyotrophic lateral sclerosis: a clinical and molecular odyssey. J Neurol Neurosurg Psychiatry 86:667–673CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ringholz GM, Appel SH, Bradshaw M, Cooke NA, Mosnik DM, Schulz PE (2005) Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 65:586–590CrossRefPubMedGoogle Scholar
  3. 3.
    Phukan J, Elamin M, Bede P et al (2012) The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry 83:102–108CrossRefPubMedGoogle Scholar
  4. 4.
    Montuschi A, Iazzolino B, Calvo A et al (2015) Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy. J Neurol Neurosurg Psychiatry 86:168–173CrossRefPubMedGoogle Scholar
  5. 5.
    Gordon PH, Delgadillo D, Piquard A et al (2011) The range and clinical impact of cognitive impairment in French patients with ALS: a cross-sectional study of neuropsychological test performance. Amyotroph Lateral Scler 12:372–378CrossRefPubMedGoogle Scholar
  6. 6.
    Rusina R, Ridzon P, Kulist’ák P et al (2010) Relationship between ALS and the degree of cognitive impairment, markers of neurodegeneration and predictors for poor outcome: a prospective study. Eur J Neurol 17:23–30CrossRefPubMedGoogle Scholar
  7. 7.
    Olney RK, Murphy J, Forshew D et al (2005) The effects of executive and behavioral dysfunction on the course of ALS. Neurology 65:1774–1777CrossRefPubMedGoogle Scholar
  8. 8.
    Elamin M, Phukan J, Bede P et al (2011) Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia. Neurology 76:1263–1269CrossRefPubMedGoogle Scholar
  9. 9.
    Murphy J, Factor-Litvak P, Goetz R et al (2016) Cognitive-behavioral screening reveals prevalent impairment in a large multicenter ALS cohort. Neurology 86:813–820CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Calvo A, Moglia C, Lunetta C et al (2017) Factors predicting survival in ALS: a multicenter Italian study. J Neurol 264:54–63CrossRefPubMedGoogle Scholar
  11. 11.
    Brooks BR, Miller RG, Swash M et al (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299CrossRefPubMedGoogle Scholar
  12. 12.
    Chiò A, Calvo A, Moglia C et al (2011) Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry 82:740–746CrossRefPubMedGoogle Scholar
  13. 13.
    Dubois B, Feldman HH, Jacova C et al (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9:1118–1127CrossRefPubMedGoogle Scholar
  14. 14.
    Strong MJ, Abrahams S, Goldstein LH et al (2017) Amyotrophic lateral sclerosis—frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener 18:153–174CrossRefPubMedGoogle Scholar
  15. 15.
    Strong MJ, Grace GM, Freedman M et al (2009) Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:131–146CrossRefPubMedGoogle Scholar
  16. 16.
    Rascovsky K, Hodges JR, Knopman D et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Govaarts R, Beeldman E, Kampelmacher MJ et al (2016) The frontotemporal syndrome of ALS is associated with poor survival. J Neurol 263:2476–2483CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chiò A, Logroscino G, Hardiman O et al (2009) Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler 10:310–323CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yokoi D, Atsuta N, Watanabe H et al (2016) Age of onset differentially influences the progression of regional dysfunction in sporadic amyotrophic lateral sclerosis. J Neurol 263:1129–1136CrossRefPubMedGoogle Scholar
  20. 20.
    Currais A, Fischer W, Maher P, Schubert D (2017) Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain. FASEB J 31:5–10CrossRefPubMedGoogle Scholar
  21. 21.
    Schreiber H, Gaigalat T, Wiedemuth-Catrinescu U et al (2005) Cognitive function in bulbar- and spinal-onset amyotrophic lateral sclerosis. A longitudinal study in 52 patients. J Neurol 252:772–781CrossRefPubMedGoogle Scholar
  22. 22.
    Hübers A, Kassubek J, Grön G et al (2016) Pathological laughing and crying in amyotrophic lateral sclerosis is related to frontal cortex function. J Neurol 263:1788–1795CrossRefPubMedGoogle Scholar
  23. 23.
    Abrahams S, Goldstein LH, Al-Chalabi A et al (1997) Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 62:464–472CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cardenas-Blanco A, Machts J, Acosta-Cabronero J et al (2014) Central white matter degeneration in bulbar- and limb-onset amyotrophic lateral sclerosis. J Neurol 261:1961–1967CrossRefPubMedGoogle Scholar
  25. 25.
    Cistaro A, Valentini MC, Chiò A et al (2012) Brain hypermetabolism in amyotrophic lateral sclerosis: a FDG PET study in ALS of spinal and bulbar onset. Eur J Nucl Med Mol Imaging 39:251–259CrossRefPubMedGoogle Scholar
  26. 26.
    Shellikeri S, Karthikeyan V, Martino R et al (2017) The neuropathological signature of bulbar-onset ALS: a systematic review. Neurosci Biobehav Rev 75:378–392CrossRefPubMedGoogle Scholar
  27. 27.
    Chiò A, Brunetti M, Barberis M et al (2016) The role of APOE in the occurrence of frontotemporal dementia in amyotrophic lateral sclerosis. JAMA Neurol 73:425–430CrossRefPubMedGoogle Scholar
  28. 28.
    Sabatelli M, Marangi G, Conte A et al (2016) New ALS-related genes expand the spectrum paradigm of amyotrophic lateral sclerosis. Brain Pathol 26:266–275CrossRefPubMedGoogle Scholar
  29. 29.
    Chiò A, Ilardi A, Cammarosano S et al (2012) Neurobehavioral dysfunction in ALS has a negative effect on outcome and use of PEG and NIV. Neurology 78:1085–1089CrossRefPubMedGoogle Scholar
  30. 30.
    Raaphorst J, Tuijp J, Verweij L et al (2013) Treatment of respiratory impairment in patients with motor neuron disease in the Netherlands: patient preference and timing of referral. Eur J Neurol 20:1524–1530CrossRefPubMedGoogle Scholar
  31. 31.
    Le Forestier N, Maisonobe T, Piquard A et al (2001) Does primary lateral sclerosis exist? A study of 20 patients and a review of the literature. Brain 124:1989–1999CrossRefPubMedGoogle Scholar
  32. 32.
    Wijesekera LC, Mathers S, Talman P et al (2009) Natural history and clinical features of the flail arm and flail leg ALS variants. Neurology 72:1087–1094CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hübers A, Hildebrandt V, Petri S et al (2016) Clinical features and differential diagnosis of flail arm syndrome. J Neurol 263:390–395CrossRefPubMedGoogle Scholar
  34. 34.
    Dimachkie MM, Muzyka IM, Katz JS et al (2013) Leg amyotrophic diplegia: prevalence and pattern of weakness at US neuromuscular centers. J Clin Neuromuscul Dis 15:7–12CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Woolley SC, York MK, Moore DH et al (2010) Detecting frontotemporal dysfunction in ALS: utility of the ALS cognitive behavioral screen (ALSCBS). Amyotroph Lateral Scler 11:303–311CrossRefPubMedGoogle Scholar
  36. 36.
    Abrahams S, Newton J, Niven E et al (2014) Screening for cognition and behaviour changes in ALS. Amyotroph Lateral Scler Frontotemporal Degener 15:9–14CrossRefPubMedGoogle Scholar
  37. 37.
    Abrahams S, Leigh PN, Harvey A et al (2000) Verbal fluency and executive dysfunction in amyotrophic lateral sclerosis (ALS). Neuropsychologia 38:734–747CrossRefPubMedGoogle Scholar
  38. 38.
    Zalonis I, Christidi F, Paraskevas G et al (2012) Can executive cognitive measures differentiate between patients with spinal- and bulbar-onset amyotrophic lateral sclerosis? Arch Clin Neuropsychol 27:348–354CrossRefPubMedGoogle Scholar
  39. 39.
    Raaphorst J, Beeldman E, Schmand B et al (2012) The ALS-FTD-Q: a new screening tool for behavioral disturbances in ALS. Neurology 79:1377–1383CrossRefPubMedGoogle Scholar
  40. 40.
    Mioshi E, Hsieh S, Caga J et al (2014) A novel tool to detect behavioural symptoms in ALS. Amyotroph Lateral Scler Frontotemporal Degener 15:298–304CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Francesca Trojsi
    • 1
  • Mattia Siciliano
    • 1
    • 2
  • Cinzia Femiano
    • 1
  • Gabriella Santangelo
    • 2
  • Christian Lunetta
    • 3
    • 4
  • Andrea Calvo
    • 5
  • Cristina Moglia
    • 5
  • Kalliopi Marinou
    • 6
  • Nicola Ticozzi
    • 7
    • 8
  • Gianluca Drago Ferrante
    • 9
  • Carlo Scialò
    • 10
  • Gianni Sorarù
    • 11
  • Amelia Conte
    • 12
  • Yuri M. Falzone
    • 13
  • Rosanna Tortelli
    • 14
  • Massimo Russo
    • 4
    • 15
  • Valeria Ada Sansone
    • 4
    • 16
  • Adriano Chiò
    • 5
  • Gabriele Mora
    • 6
  • Barbara Poletti
    • 7
    • 8
  • Paolo Volanti
    • 9
  • Claudia Caponnetto
    • 10
  • Giorgia Querin
    • 11
  • Mario Sabatelli
    • 12
    • 17
  • Nilo Riva
    • 13
  • Giancarlo Logroscino
    • 14
  • Sonia Messina
    • 4
    • 15
  • Antonio Fasano
    • 18
  • Maria Rosaria Monsurrò
    • 1
  • Gioacchino Tedeschi
    • 1
  • Jessica Mandrioli
    • 18
  1. 1.Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, MRI Research Center SUN-FISMUniversity of Campania “Luigi Vanvitelli”NaplesItaly
  2. 2.Department of PsychologyUniversità degli Studi della Campania “L. Vanvitelli”NaplesItaly
  3. 3.NEuroMuscular Omnicentre (NEMO)Serena Onlus FoundationMilanItaly
  4. 4.NEMO Sud Clinical Center for Neuromuscular DiseasesAurora Onlus FoundationMessinaItaly
  5. 5.ALS Center, “Rita Levi Montalcini” Department of NeuroscienceUniversity of TorinoTurinItaly
  6. 6.Department of Neurorehabilitation, ALS CenterIRCCS Scientific Clinical Institute MaugeriMilanItaly
  7. 7.Department of Neurology and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly
  8. 8.Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ CenterUniversity of MilanMilanItaly
  9. 9.Neurorehabilitation Unit/ALS CenterScientific Clinical Institutes (ICS) Maugeri, IRCCSMessinaItaly
  10. 10.Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of Genova, IRCCS AOU San Martino-ISTGenoaItaly
  11. 11.Department of Neurosciences, Neuromuscular CenterUniversity of PadovaPaduaItaly
  12. 12.NEuroMuscular Omnicentre (NEMO)Serena Onlus Foundation, Pol. A. Gemelli FoundationRomeItaly
  13. 13.Division of Neuroscience, Department of Neurology, Institute of Experimental Neurology (INSPE)San Raffaele Scientific InstituteMilanItaly
  14. 14.Department of Clinical Research in NeurologyUniversity of Bari “A. Moro”, at Pia Fondazione “Card. G. Panico”TricaseItaly
  15. 15.Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly
  16. 16.Department Biomedical Sciences for HealthUniversity of MilanMilanItaly
  17. 17.Department of Geriatrics, Neurosciences and Orthopedics, Institute of NeurologyCatholic University of Sacred HeartRomeItaly
  18. 18.Department of Neuroscience, S. Agostino-Estense HospitalUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations