Journal of Neurology

, Volume 264, Supplement 1, pp 87–92 | Cite as

Gait ataxia in humans: vestibular and cerebellar control of dynamic stability

  • Roman SchnieppEmail author
  • Ken Möhwald
  • Max Wuehr
Original Communication


During human locomotion, vestibular feedback control is fundamental for maintaining dynamic stability and adapting the gait pattern to external circumstances. Within the supraspinal locomotor network, the cerebellum represents the key site for the integration of vestibular feedback information. The cerebellum is further important for the fine-tuning and coordination of limb movements during walking. The aim of this review article is to highlight the shared structural and functional sensorimotor principles in vestibular and cerebellar locomotion control. Vestibular feedback for the maintenance of dynamic stability is integrated into the locomotor pattern via midline, caudal cerebellar structures (vermis, flocculonodular lobe). Hemispheric regions of the cerebellum facilitate feed-forward control of multi-joint coordination and higher locomotor functions. Characteristic features of the gait disorder in patients with vestibular deficits or cerebellar ataxia are increased levels of spatiotemporal gait variability in the fore-aft and the medio-lateral gait dimension. In the fore-aft dimension, pathologic increases of gait fluctuations critically depend on the locomotion speed and predominantly manifest during slow walking velocities. This feature is associated with an increased risk of falls in both patients with vestibular hypofunction as well as patients with cerebellar ataxia. Pharmacological approaches for the treatment of vestibular or cerebellar gait ataxia are currently not available. However, new promising options are currently tested in randomized, controlled trials (fampridine/FACEG; acetyl-dl-leucine/ALCAT).


Vestibular system Vestibulopathy Cerebellar ataxia Gait Falls Fall-related injury Gait speed 



The work was supported by Federal Ministry for Education and Science (BMBF, IFB 01EO1401) of Germany.

Compliance with ethical standards

Conflict of interest

Roman Schniepp declares that there are no financial disclosures or conflicts of interest. Ken Möhwald declares that there are no financial disclosures or conflicts of interest. Max Wuehr declares that there are no financial disclosures or conflicts of interest.

Funding sources for the study

The work was supported by the Federal Ministry for Education and Science (BMBF, Nr. 80121000-49) of Germany.


  1. 1.
    Allum JH, Adkin AL (2003) Improvements in trunk sway observed for stance and gait tasks during recovery from an acute unilateral peripheral vestibular deficit. Audiol Neurootol 8:286–302CrossRefPubMedGoogle Scholar
  2. 2.
    Alvina K, Khodakhah K (2010) The therapeutic mode of action of 4-aminopyridine in cerebellar ataxia. J Neurosci 30:7258–7268CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Brandt T, Strupp M, Benson J (1999) You are better off running than walking with acute vestibulopathy. Lancet 354:746CrossRefPubMedGoogle Scholar
  4. 4.
    Dieterich M, Brandt T (1993) Ocular torsion and tilt of subjective visual vertical are sensitive brainstem signs. Ann Neurol 33:292–299CrossRefPubMedGoogle Scholar
  5. 5.
    Feil K, Bremova T, Muth C, Schniepp R, Teufel J, Strupp M (2016) Update on the pharmacotherapy of cerebellar ataxia and nystagmus. Cerebellum 15:38–42CrossRefPubMedGoogle Scholar
  6. 6.
    Fonteyn EM, Schmitz-Hubsch T, Verstappen CC, Baliko L, Bloem BR, Boesch S, Bunn L, Charles P, Durr A, Filla A, Giunti P, Globas C, Klockgether T, Melegh B, Pandolfo M, De Rosa A, Schols L, Timmann D, Munneke M, Kremer BP, van de Warrenburg BP (2010) Falls in spinocerebellar ataxias: results of the EuroSCA Fall Study. Cerebellum 9:232–239CrossRefPubMedGoogle Scholar
  7. 7.
    Fonteyn EM, Schmitz-Hubsch T, Verstappen CC, Baliko L, Bloem BR, Boesch S, Bunn L, Giunti P, Globas C, Klockgether T, Melegh B, Pandolfo M, Schols L, Timmann D, van de Warrenburg BP (2013) Prospective analysis of falls in dominant ataxias. Eur Neurol 69:53–57CrossRefPubMedGoogle Scholar
  8. 8.
    Giordano I, Bogdanow M, Jacobi H, Jahn K, Minnerop M, Schoels L, Synofzik M, Teufel J, Klockgether T (2013) Experience in a short-term trial with 4-aminopyridine in cerebellar ataxia. J Neurol 260:2175–2176CrossRefPubMedGoogle Scholar
  9. 9.
    Ilg W, Golla H, Thier P, Giese MA (2007) Specific influences of cerebellar dysfunctions on gait. Brain 130:786–798CrossRefPubMedGoogle Scholar
  10. 10.
    Ilg W, Timmann D (2013) Gait ataxia–specific cerebellar influences and their rehabilitation. Mov Disord 28:1566–1575CrossRefPubMedGoogle Scholar
  11. 11.
    Marti S, Palla A, Straumann D (2002) Gravity dependence of ocular drift in patients with cerebellar downbeat nystagmus. Ann Neurol 52:712–721CrossRefPubMedGoogle Scholar
  12. 12.
    Pelz JO, Fricke C, Saur D, Classen J (2015) Failure to confirm benefit of acetyl-dl-leucine in degenerative cerebellar ataxia: a case series. J Neurol 262:1373–1375CrossRefPubMedGoogle Scholar
  13. 13.
    Romano S, Coarelli G, Marcotulli C, Leonardi L, Piccolo F, Spadaro M, Frontali M, Ferraldeschi M, Vulpiani MC, Ponzelli F, Salvetti M, Orzi F, Petrucci A, Vanacore N, Casali C, Ristori G (2015) Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 14:985–991CrossRefPubMedGoogle Scholar
  14. 14.
    Schlick C, Schniepp R, Loidl V, Wuehr M, Hesselbarth K, Jahn K (2016) Falls and fear of falling in vertigo and balance disorders: a controlled cross-sectional study. J Vestib Res 25:241–251CrossRefPubMedGoogle Scholar
  15. 15.
    Schniepp R, Schlick C, Pradhan C, Dieterich M, Brandt T, Jahn K, Wuehr M (2016) The interrelationship between disease severity, dynamic stability, and falls in cerebellar ataxia. J Neurol 263:1409–1417CrossRefPubMedGoogle Scholar
  16. 16.
    Schniepp R, Schlick C, Schenkel F, Pradhan C, Jahn K, Brandt T, Wuehr M (2017) Clinical and neurophysiological risk factors for falls in patients with bilateral vestibulopathy. J Neurol 264(2):277–283CrossRefPubMedGoogle Scholar
  17. 17.
    Schniepp R, Strupp M, Wuehr M, Jahn K, Dieterich M, Brandt T, Feil K (2016) Acetyl-dl-leucine improves gait variability in patients with cerebellar ataxia—a case series. Cerebellum & Ataxias 3:1CrossRefGoogle Scholar
  18. 18.
    Schniepp R, Wuehr M, Ackl N, Danek A, Brandt T, Strupp M, Jahn K (2011) 4-Aminopyridine improves gait variability in cerebellar ataxia due to CACNA 1A mutation. J Neurol 258:1708–1711CrossRefPubMedGoogle Scholar
  19. 19.
    Schniepp R, Wuehr M, Huth S, Pradhan C, Schlick C, Brandt T, Jahn K (2014) The gait disorder in downbeat nystagmus syndrome. PLoS One 9:e105463CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schniepp R, Wuehr M, Neuhaeusser M, Benecke AK, Adrion C, Brandt T, Strupp M, Jahn K (2012) 4-aminopyridine and cerebellar gait: a retrospective case series. J Neurol 259:2491–2493CrossRefPubMedGoogle Scholar
  21. 21.
    Schniepp R, Wuehr M, Neuhaeusser M, Kamenova M, Dimitriadis K, Klopstock T, Strupp M, Brandt T, Jahn K (2012) Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure. Mov Disord 27:125–131CrossRefPubMedGoogle Scholar
  22. 22.
    Schniepp R, Wuehr M, Schlick C, Huth S, Pradhan C, Dieterich M, Brandt T, Jahn K (2014) Increased gait variability is associated with the history of falls in patients with cerebellar ataxia. J Neurol 261:213–223CrossRefPubMedGoogle Scholar
  23. 23.
    Strupp M, Teufel J, Habs M, Feuerecker R, Muth C, van de Warrenburg BP, Klopstock T, Feil K (2013) Effects of acetyl-dl-leucine in patients with cerebellar ataxia: a case series. J Neurol 260:2556–2561CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    van de Warrenburg BP, van Gaalen J, Boesch S, Burgunder JM, Durr A, Giunti P, Klockgether T, Mariotti C, Pandolfo M, Riess O (2014) EFNS/ENS Consensus on the diagnosis and management of chronic ataxias in adulthood. Eur J Neurol 21:552–562CrossRefPubMedGoogle Scholar
  25. 25.
    Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Cognitive Sci 2:307–313CrossRefGoogle Scholar
  26. 26.
    Wuehr M, Schniepp R, Ilmberger J, Brandt T, Jahn K (2013) Speed-dependent temporospatial gait variability and long-range correlations in cerebellar ataxia. Gait Posture 37:214–218CrossRefPubMedGoogle Scholar
  27. 27.
    Wuehr M, Schniepp R, Pradhan C, Ilmberger J, Strupp M, Brandt T, Jahn K (2013) Differential effects of absent visual feedback control on gait variability during different locomotion speeds. Exp Brain Res 224:287–294CrossRefPubMedGoogle Scholar
  28. 28.
    Wuehr M, Schniepp R, Schlick C, Huth S, Pradhan C, Dieterich M, Brandt T, Jahn K (2014) Sensory loss and walking speed related factors for gait alterations in patients with peripheral neuropathy. Gait Posture 39:852–858CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of MunichBavariaGermany
  2. 2.German Center for Vertigo and Balance Disorders (DSGZ)University of MunichBavariaGermany

Personalised recommendations