Advertisement

Journal of Neurology

, Volume 264, Issue 2, pp 260–267 | Cite as

Cognitive dysfunction in patients with spinocerebellar ataxia type 6

  • Itaru TamuraEmail author
  • Asako Takei
  • Shinsuke Hamada
  • Michio Nonaka
  • Yoshiko Kurosaki
  • Fumio Moriwaka
Original Communication

Abstract

The aim of this study was to assess the cognitive functions of patients with spinocerebellar ataxia type 6 (SCA6). We examined 13 patients with genetically confirmed SCA6 and 13 healthy control subjects matched for age, years of education, global cognitive status, and intellectual ability. We administered verbal memory (word recall and word recognition), executive function (digit span, category and letter fluency, Frontal Assessment Battery, and Trail Making Test-A and B), and visuospatial construction (figure copying) tests. We found that the patients with SCA6 had significantly lower scores on the demanding word recall and letter fluency tests compared to the control subjects, while word recognition was well preserved in the patients with SCA6. The other executive functions tested, as well as visuospatial construction, were preserved in the SCA6 group. However, although memory encoding and storage processes were preserved, the retrieval of memorized information concerning frontal function might be selectively affected in patients with SCA6 compared to in control subjects. The impaired word recall and letter fluency noted in patients with SCA6 were interpreted as being related to a word-retrieval disability. Such dysfunctions may be attributed to damage in the frontal-cerebellum circuit owing to SCA6.

Keywords

Spinocerebellar ataxia type 6 Word recall Word fluency Word retrieval 

Notes

Acknowledgements

We would like to thank Dr. Ken Sakushima for his technical assistance.

Compliance with ethical standards

Conflicts of interest

The authors declare that there is no conflict of interest.

Ethical standard statement

The study was performed in accordance with the guidelines of the 1964 Declaration of Helsinki. Oral informed consent was obtained from each subject. This study was approved by the local ethics committee.

References

  1. 1.
    Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579. doi: 10.1093/brain/121.4.561 CrossRefPubMedGoogle Scholar
  2. 2.
    Zhuchenko O, Bailey J, Bonnen P et al (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15:62–69. doi: 10.1038/ng0197-62 CrossRefPubMedGoogle Scholar
  3. 3.
    Ishikawa K, Watanabe M, Yoshizawa K et al (1999) Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6). J Neurol Neurosurg Psychiatry 67:86–89. doi: 10.1136/jnnp.67.1.86 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kawai Y, Suenaga M, Watanabe H, Sobue G (2008) Cognitive impairment in spinocerebellar degeneration. Eur Neurol 61:257–268. doi: 10.1159/000206850 CrossRefGoogle Scholar
  5. 5.
    Globas C, Bösch S, Zühlke Ch, Daum I, Dichgans J, Bürk K (2003) The cerebellum and cognition. Intellectual function in spinocerebellar ataxia type 6 (SCA6). J Neurol 250:1482–1487. doi: 10.1007/s00415-003-0258-2 CrossRefPubMedGoogle Scholar
  6. 6.
    Garrard P, Martin NH, Giunti P, Cipolotti L (2008) Cognitive and social cognitive functioning in spinocerebellar ataxia: a preliminary characterization. J Neurol 255:398–405. doi: 10.1007/s00415-008-0680-6 CrossRefPubMedGoogle Scholar
  7. 7.
    Suenaga M, Kawai Y, Watanabe H et al (2008) Cognitive impairment in spinocerebellar ataxia type 6. J Neurol Neurosurg Psychiatry 79:496–499. doi: 10.1136/jnnp2007.119883 CrossRefPubMedGoogle Scholar
  8. 8.
    Cooper FE, Grube M, Elsegood KJ, Welch JL, Kelly TP, Chinnery PF, Griffiths TD (2010) The contribution of the cerebellum to cognition in Spinocerebellar Ataxia Type 6. Behav Neurol 23:3–15. doi: 10.3233/BEN-2010-0265 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Klinke I, Minnerop M, Schmitz-Hübsch T, Hendriks M, Klockgether T, Wüllner U, Helmstaedter C (2010) Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum 9:433–442. doi: 10.1007/s12311-010-0183-8 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Matsumoto K, Samejima K (1977) Introduction of clinical psychological assessment. Igakusyuppansya, Tokyo (in Japanese) Google Scholar
  11. 11.
    Ohtsuka T, Honma A (1991) Manual of cognitive function tests. World planning, Tokyo (in Japanese) Google Scholar
  12. 12.
    Takagi R, Kajimoto Y, Kamiyoshi S, Miwa H, Kondo T (2002) The frontal assessment battery at bedside (FAB) in patients with Parkinson’s disease. No To Shinkei 54:897–902 (in Japanese) PubMedGoogle Scholar
  13. 13.
    Gottwald B, Mihajlovic Z, Wilde B, Mehdorn HM (2003) Does the cerebellum contribute to specific aspects of attention? Neuropsychologia 41:1452–1460. doi: 10.1016/S0028-3932(03)00090-3 CrossRefPubMedGoogle Scholar
  14. 14.
    Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM (2004) Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry 75:1524–1531. doi: 10.1136/jnnp.200.018093 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA (2006) Cerebellar damage produces selective deficits in verbal working memory. Brain 129:306–320. doi: 10.1093/brain/awh685 CrossRefPubMedGoogle Scholar
  16. 16.
    Tulving E, Kapur S, Craik FI, Moscovitch M, Houle S (1994) Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc Natl Acad Sci USA 91:2016–2020CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cabeza R, Kapur S, Craik FI, McIntosh AR, Houle S, Tulving E (1997) Functional neuroanatomy of recall and recognition: a PET study of episodic memory. J Cogn Neurosci 9:254–265. doi: 10.1162/jocn.1997.9.2.254 CrossRefPubMedGoogle Scholar
  18. 18.
    Schlösser R, Hutchinson M, Joseffer S et al (1998) Functional magnetic resonance imaging of human brain activity in a verbal fluency task. J Neurol Neurosurg Psychiatry 64:492–498. doi: 10.1136/jnnp.64.4.492 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gourovitch ML, Kirkby BS, Goldberg TE et al (2000) A comparison of rCBF patterns during letter and semantic fluency. Neuropsychology 14:353–360. doi: 10.1037/0894-4105.14.3.353 CrossRefPubMedGoogle Scholar
  20. 20.
    Kawai Y, Suenaga M, Watanabe H et al (2008) Prefrontal hypoperfusion and cognitive dysfunction correlates in spinocerebellar ataxia type 6. J Neurol Sci 271:68–74. doi: 10.1016/j.jns.2008.03.018 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Itaru Tamura
    • 1
    Email author
  • Asako Takei
    • 2
  • Shinsuke Hamada
    • 2
  • Michio Nonaka
    • 2
  • Yoshiko Kurosaki
    • 1
  • Fumio Moriwaka
    • 2
  1. 1.Department of Communication Disorders, School of Psychological ScienceHealth Sciences University of HokkaidoSapporoJapan
  2. 2.Hokuyukai Neurology HospitalSapporoJapan

Personalised recommendations