Journal of Neurology

, Volume 263, Issue 11, pp 2215–2223 | Cite as

Cerebral and cerebellar grey matter atrophy in Friedreich ataxia: the IMAGE-FRDA study

  • Louisa P. Selvadurai
  • Ian H. Harding
  • Louise A. Corben
  • Monique R. Stagnitti
  • Elsdon Storey
  • Gary F. Egan
  • Martin B. Delatycki
  • Nellie Georgiou-Karistianis
Original Communication

Abstract

Friedreich ataxia (FRDA) is traditionally associated with neuropathology in the cerebellar dentate nucleus and spinal cord. Growing evidence also suggests involvement of the cerebral and cerebellar cortices, although reports of structural abnormalities remain mixed. This study assessed the structural integrity of cortical grey matter in FRDA, focussing on regions in which pathology may underlie the motor deficits characteristic of this disorder. T1-weighted anatomical magnetic resonance imaging scans were acquired from 31 individuals with FRDA and 37 healthy controls. Cortical thickness (FreeSurfer) and cortical volume (SPM-VBM) were measured in cerebral motor regions-of-interest (primary motor, dorsal and ventral premotor, and supplementary motor areas) alongside unconstrained exploratory analyses of the cerebral and cerebellar cortices. Correlations were assessed between cortical thickness/volume measures and each of disease severity, length of the causative genetic triplet-repeat expansion, and finger-tapping behavioural measures. Individuals with FRDA had significantly reduced cortical thickness, relative to controls, in the premotor and supplementary motor areas. Reduced cortical thickness and/or volume were also observed in the cuneus and precuneus, posterior aspects of the medial and lateral prefrontal cortices, insula, temporal poles, and cerebellar lobules V, VI, and VII. Measures of clinical severity, genetic abnormality, and motor dysfunction correlated with volume loss in the lateral cerebellar hemispheres. These results suggest that atrophy preferentially affects premotor relative to primary areas of the cortical motor system, and also extends to a range of non-motor brain regions. Furthermore, cortical thickness and cortical volume findings were largely divergent, suggesting that each is sensitive to different aspects of neuropathology in FRDA. Overall, this study supports a disease model involving neural aberrations within the cerebral and cerebellar cortices, beyond those traditionally associated with this disorder.

Keywords

Friedreich ataxia MRI Cortical thickness Voxel-based morphometry 

Supplementary material

415_2016_8252_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 35 kb)

References

  1. 1.
    Akhlaghi H, Corben L, Georgiou-Karistianis N, Bradshaw J, Delatycki MB, Storey E, Egan GF (2012) A functional MRI study of motor dysfunction in Friedreich’s ataxia. Brain Res 1471:138–154CrossRefPubMedGoogle Scholar
  2. 2.
    Akhlaghi H, Yu J, Corben L, Georgiou-Karistianis N, Bradshaw JL, Storey E, Delatycki MB, Egan GF (2014) Cognitive deficits in Friedreich ataxia correlate with micro-structural changes in dentatorubral tract. Cerebellum 13:187–198CrossRefPubMedGoogle Scholar
  3. 3.
    Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11:805–821CrossRefPubMedGoogle Scholar
  4. 4.
    Barulli D, Stern Y (2013) Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends Cogn Sci 17:502–509. doi:10.1016/j.tics.2013.1008.1012 CrossRefPubMedGoogle Scholar
  5. 5.
    Beck AT, Steer RA, Brown GK (1996) Manual for the BDI-II. The Psychological Corporation, San AntonioGoogle Scholar
  6. 6.
    Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT (2011) The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106:2322–2345CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Carrera E, Tononi G (2014) Diaschisis: past, present, future. Brain J Neurol 137:2408–2422CrossRefGoogle Scholar
  8. 8.
    Corben LA, Delatycki MB, Bradshaw JL, Churchyard AJ, Georgiou-Karistianis N (2011) Utilisation of advance motor information is impaired in Friedreich ataxia. Cerebellum 10:793–803CrossRefPubMedGoogle Scholar
  9. 9.
    Della Nave R, Ginestroni A, Giannelli M, Tessa C, Salvatore E, Salvi F, Dotti MT, De Michele G, Piacentini S, Mascalchi M (2008) Brain structural damage in Friedreich’s ataxia. J Neurol Neurosurg Psychiatry 79:82–85CrossRefPubMedGoogle Scholar
  10. 10.
    Della Nave R, Ginestroni A, Tessa C, Salvatore E, Bartolomei I, Salvi F, Dotti MT, De Michele G, Piacentini S, Mascalchi M (2008) Brain white matter tracts degeneration in Friedreich ataxia. An in vivo MRI study using tract-based spatial statistics and voxel-based morphometry. NeuroImage 40:19–25CrossRefPubMedGoogle Scholar
  11. 11.
    Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci 97:11050–11055CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fornito A, Zalesky A, Breakspear M (2015) The connectomics of brain disorders. Nat Rev Neurosci 16:159–172CrossRefPubMedGoogle Scholar
  13. 13.
    Franca MC Jr, D’Abreu A, Yasuda CL, Bonadia LC, Santos da Silva M, Nucci A, Lopes-Cendes I, Cendes F (2009) A combined voxel-based morphometry and 1H-MRS study in patients with Friedreich’s ataxia. J Neurol 256:1114–1120CrossRefPubMedGoogle Scholar
  14. 14.
    Georgiou-Karistianis N, Akhlaghi H, Corben LA, Delatycki MB, Storey E, Bradshaw JL, Egan GF (2012) Decreased functional brain activation in Friedreich ataxia using the Simon effect task. Brain Cogn 79:200–208CrossRefPubMedGoogle Scholar
  15. 15.
    Ginestroni A, Diciotti S, Cecchi P, Pesaresi I, Tessa C, Giannelli M, Nave RD, Salvatore E, Salvi F, Dotti MT, Piacentini S, Soricelli A, Cosottini M, De Stefano N, Mascalchi M (2012) Neurodegeneration in Friedreich’s ataxia is associated with a mixed activation pattern of the brain. A fMRI study. Hum Brain Mapp 33:1780–1791CrossRefPubMedGoogle Scholar
  16. 16.
    Hagler DJ Jr, Saygin AP, Sereno MI (2006) Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. NeuroImage 33:1093–1103CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Harding IH, Corben LA, Storey E, Egan GF, Stagnitti MR, Poudel G, Delatycki MB, Georgiou-Karistianis N (2016) Fronto-cerebellar dysfunction and dysconnectivity underlying cognitive functioning in Friedreich ataxia: the IMAGE-FRDA study. Hum Brain Mapp 37:338–350CrossRefPubMedGoogle Scholar
  18. 18.
    Harding IH, Raniga P, Delatycki MB, Stagnitti MR, Corben LA, Storey E, Georgiou-Karistianis N, Egan GF (2016) Tissue atrophy and elevated iron concentration in the extrapyramidal motor system in Friedreich ataxia: the IMAGE-FRDA study. J Neurol Neurosurg Psychiatry. doi:10.1136/jnnp-2015-312665 PubMedGoogle Scholar
  19. 19.
    Hernandez-Castillo CR, Galvez V, Diaz R, Fernandez-Ruiz J (2016) Specific cerebellar and cortical degeneration correlates with ataxia severity in spinocerebellar ataxia type 7. Brain Imaging Behav 10:252–257CrossRefPubMedGoogle Scholar
  20. 20.
    Hocking DR, Corben LA, Fielding J, Cremer PD, Millist L, White OB, Delatycki MB (2014) Saccade reprogramming in Friedreich ataxia reveals impairments in the cognitive control of saccadic eye movement. Brain Cogn 87:161–167CrossRefPubMedGoogle Scholar
  21. 21.
    Hwang K, Hallquist MN, Luna B (2012) The development of hub architecture in the human functional brain network. Cereb Cortex 23:2380–2393CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Im K, Lee J-M, Lyttelton O, Kim SH, Evans AC, Kim SI (2008) Brain size and cortical structure in the adult human brain. Cereb Cortex 18:2181–2191CrossRefPubMedGoogle Scholar
  23. 23.
    Koeppen AH, Davis AN, Morral JA (2011) The cerebellar component of Friedreich’s ataxia. Acta Neuropathol 122:323–330CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Koeppen AH, Mazurkiewicz JE (2013) Friedreich ataxia: neuropathology revised. J Neuropathol Exp Neurol 72:78–90CrossRefPubMedGoogle Scholar
  25. 25.
    Kong L, Herold CJ, Zöllner F, Salat DH, Lässer MM, Schmid LA, Fellhauer I, Thomann PA, Essig M, Schad LR, Erickson KI, Schröder J (2015) Comparison of grey matter volume and thickness for analysing cortical changes in chronic schizophrenia: a matter of surface area, grey/white matter intensity contrast, and curvature. Psychiatry Res Neuroimaging 231:176–183CrossRefPubMedGoogle Scholar
  26. 26.
    Mayka MA, Corcos DM, Leurgans SE, Vaillancourt DE (2006) Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. NeuroImage 31:1453–1474CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214:655–667CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nachbauer W, Bodner T, Boesch S, Karner E, Eigentler A, Neier L, Benke T, Delazer M (2014) Friedreich ataxia: executive control is related to disease onset and GAA repeat length. Cerebellum 13:9–16CrossRefPubMedGoogle Scholar
  29. 29.
    Nieto A, Correia R, de Nobrega E, Montón F, Hess S, Barroso J (2012) Cognition in Friedreich ataxia. Cerebellum 11:834–844CrossRefPubMedGoogle Scholar
  30. 30.
    Pandolfo M (2009) Friedreich ataxia: the clinical picture. J Neurol 256:3–8CrossRefPubMedGoogle Scholar
  31. 31.
    Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, Jacobson K, Lyons MJ, Grant MD, Franz CE, Xian H, Tsuang M, Fischl B, Seidman L, Dale A, Kremen WS (2009) Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex (New York, NY 19:2728–2735Google Scholar
  32. 32.
    Rezende TJR, Silva CB, Yassuda CL, Campos BM, D’Abreu A, Cendes F, Lopes-Cendes I, França MC (2016) Longitudinal magnetic resonance imaging study shows progressive pyramidal and callosal damage in Friedreich’s ataxia. Mov Disord 31:70–78CrossRefPubMedGoogle Scholar
  33. 33.
    Sanabria-Diaz G, Melie-García L, Iturria-Medina Y, Alemán-Gómez Y, Hernández-González G, Valdés-Urrutia L, Galán L, Valdés-Sosa P (2010) Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks. NeuroImage 50:1497–1510CrossRefPubMedGoogle Scholar
  34. 34.
    Schulz JB, Borkert J, Wolf S, Schmitz-Hübsch T, Rakowicz M, Mariotti C, Schoels L, Timmann D, van de Warrenburg B, Dürr A, Pandolfo M, Kang J-S, Mandly AG, Nägele T, Grisoli M, Boguslawska R, Bauer P, Klockgether T, Hauser T-K (2010) Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. NeuroImage 49:158–168CrossRefPubMedGoogle Scholar
  35. 35.
    Silk TJ, Beare R, Malpas C, Adamson C, Vilgis V, Vance A, Bellgrove MA (2016) Cortical morphometry in attention deficit/hyperactivity disorder: contribution of thickness and surface area to volume. Cortex 82:1–10CrossRefPubMedGoogle Scholar
  36. 36.
    Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44:83–98CrossRefPubMedGoogle Scholar
  37. 37.
    Sporns O, Honey CJ, Kötter R (2007) Identification and classification of hubs in brain networks. PLoS One 2:e1049CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Stout JC, Paulsen JS, Queller S, Solomon AC, Whitlock KB, Campbell JC, Carlozzi N, Duff K, Beglinger LJ, Langbehn DR, Johnson SA, Biglan KM, Aylward EH (2011) Neurocognitive signs in prodromal Huntington disease. Neuropsychology 25:1–14CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Subramony SH, May W, Lynch D, Gomez C, Fischbeck K, Hallett M, Taylor P, Wilson R, Ashizawa T (2005) Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology 64:1261–1262CrossRefPubMedGoogle Scholar
  40. 40.
    Tomasi D, Volkow ND (2011) Functional connectivity hubs in the human brain. NeuroImage 57:908–917CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    van den Heuvel MP, Sporns O (2013) Network hubs in the human brain. Trends Cognit Sci 17:683–696CrossRefGoogle Scholar
  42. 42.
    Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, Duggirala R, Glahn DC (2010) Cortical thickness or grey matter volume? the importance of selecting the phenotype for imaging genetics studies. NeuroImage 53:1135–1146CrossRefPubMedGoogle Scholar
  43. 43.
    Yang J-J, Kwon H, Lee J-M (2016) Complementary characteristics of correlation patterns in morphometric correlation networks of cortical thickness, surface area, and gray matter volume. Sci Reports 6:26682CrossRefGoogle Scholar
  44. 44.
    Zalesky A, Akhlaghi H, Corben LA, Bradshaw JL, Delatycki MB, Storey E, Georgiou-Karistianis N, Egan GF (2014) Cerebello-cerebral connectivity deficits in Friedreich ataxia. Brain Struct Funct 219:969–981CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Louisa P. Selvadurai
    • 1
  • Ian H. Harding
    • 1
  • Louise A. Corben
    • 1
    • 2
    • 3
  • Monique R. Stagnitti
    • 1
  • Elsdon Storey
    • 4
  • Gary F. Egan
    • 1
    • 5
  • Martin B. Delatycki
    • 1
    • 2
    • 3
    • 6
  • Nellie Georgiou-Karistianis
    • 1
  1. 1.School of Psychological Sciences and Monash Institute of Cognitive and Clinical NeurosciencesMonash UniversityMelbourneAustralia
  2. 2.Bruce Lefroy Centre for Genetic Health ResearchMurdoch Childrens Research InstituteMelbourneAustralia
  3. 3.Department of PaediatricsThe University of MelbourneMelbourneAustralia
  4. 4.Department of MedicineMonash UniversityMelbourneAustralia
  5. 5.Monash Biomedical ImagingMonash UniversityMelbourneAustralia
  6. 6.Clinical Genetics, Austin HealthMelbourneAustralia

Personalised recommendations