Advertisement

Journal of Neurology

, Volume 263, Issue 11, pp 2179–2187 | Cite as

Relationship between type 1 metabotropic glutamate receptors and cerebellar ataxia

  • Kenji IshibashiEmail author
  • Yoshiharu Miura
  • Kinya Ishikawa
  • Ming-Rong Zhang
  • Jun Toyohara
  • Kiichi Ishiwata
  • Kenji Ishii
Original Communication

Abstract

Imaging of type 1 metabotropic glutamate receptor (mGluR1) has recently become possible using positron emission tomography (PET). We aimed to examine the relationship between mGluR1 and cerebellar ataxia. Families with spinocerebellar ataxia type 19/22 (SCA19/22) and SCA6, six patients with sporadic SCA, and 26 healthy subjects underwent PET using an mGluR1 radiotracer. Volumes-of-interest were placed on the anterior and posterior lobes and vermis. The binding potential (BPND) was calculated to estimate mGluR1 availability. A partial volume correction was applied to the BPND values. The Scale for the Assessment and Rating of Ataxia (SARA) score were measured. In each patient with SCA19/22 and SCA6, the anterior lobe showed the highest decrease rates in the BPND values, compared with healthy subjects. In the families with SCA19/22 and SCA6, the disease durations and SARA scores were shorter and lower, respectively, in the offspring, compared with the parents. However, the offspring paradoxically showed lower BPND values, especially in the anterior lobe, compared with the parents. The patients with sporadic SCA showed significantly lower BPND values in all subregions than healthy subjects. The BPND values significantly correlated with the SARA scores in all participants. In conclusion, these results showed a decrease in mGluR1 availability in patients with hereditary and sporadic SCA, a correlation between mGluR1 availability and degree of cerebellar ataxia, and paradoxical findings in two families. These results suggest the potential use of mGluR1 imaging as a specific biomarker of cerebellar ataxia.

Keywords

Type 1 metabotropic glutamate receptor Spinocerebellar ataxia type 6 Spinocerebellar ataxia type 19/22 Sporadic spinocerebellar ataxia PET 11C-ITMM 

Notes

Acknowledgments

This study was supported by a Grant-in-Aid for Young Scientists (B) no. 15K19503 to KIshibashi and for Scientific Research (B) no. 24390298 to KIshiwata from the Japan Society for the Promotion of Science. The authors thank the people of Research Team for Neuroimaging at the Tokyo Metropolitan Institute of Gerontology.

Compliance with ethical standards

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical standard

The study was approved by the Ethics Committee of the Tokyo Metropolitan Institute of Gerontology (H26-49).

References

  1. 1.
    Toyohara J, Sakata M, Fujinaga M, Yamasaki T, Oda K, Ishii K, Zhang MR, Moriguchi Jeckel CM, Ishiwata K (2013) Preclinical and the first clinical studies on [11C]ITMM for mapping metabotropic glutamate receptor subtype 1 by positron emission tomography. Nucl Med Biol 40(2):214–220. doi: 10.1016/j.nucmedbio.2012.11.008 CrossRefPubMedGoogle Scholar
  2. 2.
    Toyohara J, Sakata M, Oda K, Ishii K, Ito K, Hiura M, Fujinaga M, Yamasaki T, Zhang MR, Ishiwata K (2013) Initial human PET studies of metabotropic glutamate receptor type 1 ligand 11C-ITMM. J Nucl Med 54(8):1302–1307. doi: 10.2967/jnumed.113.119891 CrossRefPubMedGoogle Scholar
  3. 3.
    Martin LJ, Blackstone CD, Huganir RL, Price DL (1992) Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 9(2):259–270CrossRefPubMedGoogle Scholar
  4. 4.
    Shigemoto R, Nakanishi S, Mizuno N (1992) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. J Comp Neurol 322(1):121–135. doi: 10.1002/cne.903220110 CrossRefPubMedGoogle Scholar
  5. 5.
    Baude A, Nusser Z, Roberts JD, Mulvihill E, McIlhinney RA, Somogyi P (1993) The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11(4):771–787CrossRefPubMedGoogle Scholar
  6. 6.
    Yamasaki T, Maeda J, Fujinaga M, Nagai Y, Hatori A, Yui J, Xie L, Nengaki N, Zhang MR (2014) PET brain kinetics studies of (11)C-ITMM and (11)C-ITDM, radioprobes for metabotropic glutamate receptor type 1, in a nonhuman primate. Am J Nucl Med Mol Imaging 4(3):260–269PubMedPubMedCentralGoogle Scholar
  7. 7.
    Yamasaki T, Fujinaga M, Maeda J, Kawamura K, Yui J, Hatori A, Yoshida Y, Nagai Y, Tokunaga M, Higuchi M, Suhara T, Fukumura T, Zhang MR (2012) Imaging for metabotropic glutamate receptor subtype 1 in rat and monkey brains using PET with [18F]FITM. Eur J Nucl Med Mol Imaging 39(4):632–641. doi: 10.1007/s00259-011-1995-6 CrossRefPubMedGoogle Scholar
  8. 8.
    Li S, Huang Y (2014) In vivo imaging of the metabotropic glutamate receptor 1 (mGluR1) with positron emission tomography: recent advance and perspective. Curr Med Chem 21(1):113–123CrossRefPubMedGoogle Scholar
  9. 9.
    Ferraguti F, Crepaldi L, Nicoletti F (2008) Metabotropic glutamate 1 receptor: current concepts and perspectives. Pharmacol Rev 60(4):536–581. doi: 10.1124/pr.108.000166 CrossRefPubMedGoogle Scholar
  10. 10.
    Aiba A, Kano M, Chen C, Stanton ME, Fox GD, Herrup K, Zwingman TA, Tonegawa S (1994) Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79(2):377–388CrossRefPubMedGoogle Scholar
  11. 11.
    Sillevis Smitt P, Kinoshita A, De Leeuw B, Moll W, Coesmans M, Jaarsma D, Henzen-Logmans S, Vecht C, De Zeeuw C, Sekiyama N, Nakanishi S, Shigemoto R (2000) Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med 342(1):21–27. doi: 10.1056/NEJM200001063420104 CrossRefPubMedGoogle Scholar
  12. 12.
    Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K, Shigemoto R, Katsuki M, Aiba A (2000) mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 288(5472):1832–1835CrossRefPubMedGoogle Scholar
  13. 13.
    Notartomaso S, Zappulla C, Biagioni F, Cannella M, Bucci D, Mascio G, Scarselli P, Fazio F, Weisz F, Lionetto L, Simmaco M, Gradini R, Battaglia G, Signore M, Puliti A, Nicoletti F (2013) Pharmacological enhancement of mGlu1 metabotropic glutamate receptors causes a prolonged symptomatic benefit in a mouse model of spinocerebellar ataxia type 1. Mol Brain 6:48. doi: 10.1186/1756-6606-6-48 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ishibashi K, Miura Y, Ishikawa K, Ishii K, Ishiwata K (2015) Decreased metabotropic glutamate receptor type 1 availability in a patient with spinocerebellar ataxia type 6: a (11)C-ITMM PET study. J Neurol Sci 355(1–2):202–205. doi: 10.1016/j.jns.2015.05.041 CrossRefPubMedGoogle Scholar
  15. 15.
    Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS, Kremer B, Mariotti C, Melegh B, Pandolfo M, Rakowicz M, Ribai P, Rola R, Schols L, Szymanski S, van de Warrenburg BP, Durr A, Klockgether T, Fancellu R (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66(11):1717–1720. doi: 10.1212/01.wnl.0000219042.60538.92 CrossRefPubMedGoogle Scholar
  16. 16.
    Lee YC, Durr A, Majczenko K, Huang YH, Liu YC, Lien CC, Tsai PC, Ichikawa Y, Goto J, Monin ML, Li JZ, Chung MY, Mundwiller E, Shakkottai V, Liu TT, Tesson C, Lu YC, Brice A, Tsuji S, Burmeister M, Stevanin G, Soong BW (2012) Mutations in KCND3 cause spinocerebellar ataxia type 22. Ann Neurol 72(6):859–869. doi: 10.1002/ana.23701 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. NeuroImage 4(3 Pt 1):153–158. doi: 10.1006/nimg.1996.0066 CrossRefPubMedGoogle Scholar
  18. 18.
    Wu Y, Carson RE (2002) Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 22(12):1440–1452. doi: 10.1097/00004647-200212000-00004 CrossRefGoogle Scholar
  19. 19.
    Meltzer CC, Leal JP, Mayberg HS, Wagner HN Jr, Frost JJ (1990) Correction of PET data for partial volume effects in human cerebral cortex by MR imaging. J Comput Assist Tomogr 14(4):561–570CrossRefPubMedGoogle Scholar
  20. 20.
    Raz N, Gunning-Dixon F, Head D, Williamson A, Acker JD (2001) Age and sex differences in the cerebellum and the ventral pons: a prospective MR study of healthy adults. AJNR Am J Neuroradiol 22(6):1161–1167PubMedGoogle Scholar
  21. 21.
    Waite LM, Broe GA, Creasey H, Grayson D, Edelbrock D, O’Toole B (1996) Neurological signs, aging, and the neurodegenerative syndromes. Arch Neurol 53(6):498–502CrossRefPubMedGoogle Scholar
  22. 22.
    Andersen BB, Gundersen HJ, Pakkenberg B (2003) Aging of the human cerebellum: a stereological study. J Comp Neurol 466(3):356–365. doi: 10.1002/cne.10884 CrossRefPubMedGoogle Scholar
  23. 23.
    Verbeek DS, Schelhaas JH, Ippel EF, Beemer FA, Pearson PL, Sinke RJ (2002) Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21-q21. Hum Genet 111(4–5):388–393. doi: 10.1007/s00439-002-0782-7 CrossRefPubMedGoogle Scholar
  24. 24.
    Schelhaas HJ, Verbeek DS, Van de Warrenburg BP, Sinke RJ (2004) SCA19 and SCA22: evidence for one locus with a worldwide distribution. Brain J Neurol 127 (Pt 1):E6. doi: 10.1093/brain/awh036 (author reply E7)
  25. 25.
    Chung MY, Lu YC, Cheng NC, Soong BW (2003) A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain J Neurol 126(Pt 6):1293–1299CrossRefGoogle Scholar
  26. 26.
    Duarri A, Jezierska J, Fokkens M, Meijer M, Schelhaas HJ, den Dunnen WF, van Dijk F, Verschuuren-Bemelmans C, Hageman G, van de Vlies P, Kusters B, van de Warrenburg BP, Kremer B, Wijmenga C, Sinke RJ, Swertz MA, Kampinga HH, Boddeke E, Verbeek DS (2012) Mutations in potassium channel kcnd3 cause spinocerebellar ataxia type 19. Ann Neurol 72(6):870–880. doi: 10.1002/ana.23700 CrossRefPubMedGoogle Scholar
  27. 27.
    Seidel K, Kusters B, den Dunnen WF, Bouzrou M, Hageman G, Korf HW, Schelhaas HJ, Verbeek D, Rub U (2014) First patho-anatomical investigation of the brain of a SCA19 patient. Neuropathol Appl Neurobiol 40(5):640–644. doi: 10.1111/nan.12128 CrossRefPubMedGoogle Scholar
  28. 28.
    Schelhaas HJ, van de Warrenburg BP (2005) Clinical, psychological, and genetic characteristics of spinocerebellar ataxia type 19 (SCA19). Cerebellum 4(1):51–54. doi: 10.1080/14734220510007888 CrossRefPubMedGoogle Scholar
  29. 29.
    Rub U, Schols L, Paulson H, Auburger G, Kermer P, Jen JC, Seidel K, Korf HW, Deller T (2013) Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol 104:38–66. doi: 10.1016/j.pneurobio.2013.01.001 CrossRefPubMedGoogle Scholar
  30. 30.
    Ishikawa K, Watanabe M, Yoshizawa K, Fujita T, Iwamoto H, Yoshizawa T, Harada K, Nakamagoe K, Komatsuzaki Y, Satoh A, Doi M, Ogata T, Kanazawa I, Shoji S, Mizusawa H (1999) Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6). J Neurol Neurosurg Psychiatry 67(1):86–89CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, Zee DS, Clark HB, Anderson JH (1997) Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol 42(6):933–950. doi: 10.1002/ana.410420616 CrossRefPubMedGoogle Scholar
  32. 32.
    Kato T, Tanaka F, Yamamoto M, Yosida E, Indo T, Watanabe H, Yoshiwara T, Doyu M, Sobue G (2000) Sisters homozygous for the spinocerebellar ataxia type 6 (SCA6)/CACNA1A gene associated with different clinical phenotypes. Clin Genet 58(1):69–73CrossRefPubMedGoogle Scholar
  33. 33.
    Takahashi H, Ishikawa K, Tsutsumi T, Fujigasaki H, Kawata A, Okiyama R, Fujita T, Yoshizawa K, Yamaguchi S, Tomiyasu H, Yoshii F, Mitani K, Shimizu N, Yamazaki M, Miyamoto T, Orimo T, Shoji S, Kitamura K, Mizusawa H (2004) A clinical and genetic study in a large cohort of patients with spinocerebellar ataxia type 6. J Hum Genet 49(5):256–264. doi: 10.1007/s10038-004-0142-7 CrossRefPubMedGoogle Scholar
  34. 34.
    Klockgether T (2010) Sporadic ataxia with adult onset: classification and diagnostic criteria. Lancet Neurol 9(1):94–104. doi: 10.1016/S1474-4422(09)70305-9 CrossRefPubMedGoogle Scholar
  35. 35.
    Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage 44(2):489–501. doi: 10.1016/j.neuroimage.2008.08.039 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Kenji Ishibashi
    • 1
    • 2
    Email author
  • Yoshiharu Miura
    • 2
  • Kinya Ishikawa
    • 3
  • Ming-Rong Zhang
    • 4
  • Jun Toyohara
    • 1
  • Kiichi Ishiwata
    • 1
    • 5
    • 6
  • Kenji Ishii
    • 1
  1. 1.Research Team for NeuroimagingTokyo Metropolitan Institute of GerontologyTokyoJapan
  2. 2.Department of NeurologyTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalTokyoJapan
  3. 3.Department of Neurology and Neurological Science, and Predictive and Preventive MedicineTokyo Medical and Dental UniversityTokyoJapan
  4. 4.Molucular Probe Program, Molecular Imaging CenterNational Institute of Radiological SciencesChibaJapan
  5. 5.Institute of Cyclotron and Drug Discovery ResearchSouthern Tohoku Research Institute for NeuroscienceKoriyamaJapan
  6. 6.Department of Biofunctional ImagingFukushima Medical UniversityFukushimaJapan

Personalised recommendations