Advertisement

Journal of Neurology

, Volume 263, Issue 8, pp 1593–1603 | Cite as

Cognition and eating behavior in amyotrophic lateral sclerosis: effect on survival

  • R. M. Ahmed
  • J. Caga
  • E. Devenney
  • S. Hsieh
  • L. Bartley
  • E. Highton-Williamson
  • E. Ramsey
  • M. Zoing
  • G. M. Halliday
  • O. Piguet
  • J. R. Hodges
  • M. C. Kiernan
Original Communication

Abstract

It is increasingly recognized that metabolic factors influenced by eating behavior, may affect disease progression in neurodegeneration. In frontotemporal dementia (FTD), which shares a significant overlap with Amyotrophic lateral sclerosis (ALS), patients are well known to develop changes in eating behavior. Whether patients with pure ALS and those with cognitive and behavioral changes associated with ALS also develop similar changes is not known. The current study aimed to examine caloric intake, eating behavioral changes, body mass index, and using cox regression analyses survival across the spectrum of 118 ALS-FTD patients (29 pure ALS, 12 ALS-plus and 21 ALS-FTD, 56 behavioral variant FTD), compared with 25 control subjects. The current study found contrary to previous assumptions eating changes are not restricted to FTD, but a spectrum of eating behavioral changes occur in ALS, present in those with pure ALS and worsening as patients develop cognitive changes. ALS patients with cognitive impairment exhibited changes in food preference, with caloric intake and BMI increasing with the development of cognitive/behavioral changes. Both pure ALS and those with cognitive impairment demonstrated increased saturated fat intake. Survival analyses over the mean patient follow-up period of 6.9 years indicated that increasing eating behavioral changes were associated with an improved survival (threefold decrease risk of dying). Changes in eating behavior and metabolism occur in ALS in association with increasing cognitive impairment, perhaps exerting a protective survival influence. These changes provide insights into the common neural networks controlling eating and metabolism in FTD and ALS and provide potential targets to modify disease prognosis and progression.

Keywords

Amyotrophic lateral sclerosis Frontotemporal dementia Metabolism Eating Hypothalamus Neurodegeneration Neuroendocrine 

Notes

Acknowledgments

We wish to thank Ms Heidi Cartwright for assistance with the figures.

Compliance with ethical standards

Conflicts of interest

No author reports a conflict of interest. Prof Kiernan: Editor-in-Chief, Journal of Neurology, Neurosurgery and Psychiatry.

Funding

This work was supported by funding to Forefront, a collaborative research group dedicated to the study of frontotemporal dementia and amyotrophic lateral sclerosis, from the National Health and Medical Research Council of Australia (NHMRC) program Grant (#1037746 to GH, MK and JH) and the Australian Research Council Centre of Excellence in Cognition and its Disorders Memory Node (#CE110001021 to OP and JH) and other grants/sources (NHMRC Project Grant #1003139). We are grateful to the research participants involved with the ForeFront research studies. RA is a Royal Australasian College of Physicians PhD scholar and MND Australia PhD scholar. GH is an NHMRC Senior Principal Research Fellow (#1079679). OP is an NHMRC Senior Research Fellow (#1103258).

Supplementary material

415_2016_8168_MOESM1_ESM.docx (114 kb)
Supplementary material 1 (DOCX 113 kb)

References

  1. 1.
    Diagnosis ETFo, Management of Amyotrophic Lateral S, Andersen PM, Abrahams S, Borasio GD, de Carvalho M, Chio A, Van Damme P, Hardiman O, Kollewe K, Morrison KE, Petri S, Pradat PF, Silani V, Tomik B, Wasner M, Weber M (2012) EFNS guidelines on the clinical management of amyotrophic lateral sclerosis (MALS)–revised report of an EFNS task force. Eur J Neurol 19:360–375Google Scholar
  2. 2.
    Turner MR, Kiernan MC (2015) The standard of care in amyotrophic lateral sclerosis: a centralised multidisciplinary clinic encounter sets a new benchmark for a uniquely challenging neurodegenerative disorder. J Neurol Neurosurg Psychiatry 86:481–482CrossRefPubMedGoogle Scholar
  3. 3.
    Rooney J, Byrne S, Heverin M, Tobin K, Dick A, Donaghy C, Hardiman O (2015) A multidisciplinary clinic approach improves survival in ALS: a comparative study of ALS in Ireland and Northern Ireland. J Neurol Neurosurg Psychiatry 86:496–501CrossRefPubMedGoogle Scholar
  4. 4.
    Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955CrossRefPubMedGoogle Scholar
  5. 5.
    Turner MR, Hardiman O, Benatar M, Brooks BR, Chio A, de Carvalho M, Ince PG, Lin C, Miller RG, Mitsumoto H, Nicholson G, Ravits J, Shaw PJ, Swash M, Talbot K, Traynor BJ, Van den Berg LH, Veldink JH, Vucic S, Kiernan MC (2013) Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 12:310–322CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Simon NG, Turner MR, Vucic S, Al-Chalabi A, Shefner J, Lomen-Hoerth C, Kiernan MC (2014) Quantifying disease progression in amyotrophic lateral sclerosis. Ann Neurol 76:643–657CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ahmed RM, Irish M, Piguet O, Halliday GM, Ittner LM, Farooqi S, Hodges JR, Kiernan MC (2016) Amyotrophic lateral sclerosis and frontotemporal dementia: distinct and overlapping changes in eating behaviour and metabolism. Lancet Neurol 15:332–342CrossRefPubMedGoogle Scholar
  8. 8.
    Kuhnlein P, Gdynia HJ, Sperfeld AD, Lindner-Pfleghar B, Ludolph AC, Prosiegel M, Riecker A (2008) Diagnosis and treatment of bulbar symptoms in amyotrophic lateral sclerosis. Nat Clin Pract Neurol 4:366–374CrossRefPubMedGoogle Scholar
  9. 9.
    Holm T, Maier A, Wicks P, Lang D, Linke P, Munch C, Steinfurth L, Meyer R, Meyer T (2013) Severe loss of appetite in amyotrophic lateral sclerosis patients: online self-assessment study Interact. J Med Res 2:e8Google Scholar
  10. 10.
    Jesse S, Thal DR, Ludolph AC (2015) Thiamine deficiency in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 86:1166–1168CrossRefPubMedGoogle Scholar
  11. 11.
    Huisman MH, Seelen M, van Doormaal PT, de Jong SW, de Vries JH, van der Kooi AJ, de Visser M, Schelhaas HJ, van den Berg LH, Veldink JH (2015) Effect of presymptomatic body mass index and consumption of fat and alcohol on amyotrophic lateral sclerosis. JAMA Neurol 72(10):1155–1162CrossRefPubMedGoogle Scholar
  12. 12.
    Dorst J, Cypionka J, Ludolph AC (2013) High-caloric food supplements in the treatment of amyotrophic lateral sclerosis: a prospective interventional study. Amyotroph Lateral Scler Frontotemporal Degener 14:533–536CrossRefPubMedGoogle Scholar
  13. 13.
    Desport JC, Preux PM, Magy L, Boirie Y, Vallat JM, Beaufrere B, Couratier P (2001) Factors correlated with hypermetabolism in patients with amyotrophic lateral sclerosis. Am J Clin Nutr 74:328–334PubMedGoogle Scholar
  14. 14.
    Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59:1077–1079CrossRefPubMedGoogle Scholar
  15. 15.
    Ludolph AC, Brettschneider J (2015) TDP-43 in amyotrophic lateral sclerosis—is it a prion disease? Eur J Neurol 22:753–761CrossRefPubMedGoogle Scholar
  16. 16.
    Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Del Tredici K (2013) Amyotrophic lateral sclerosis–a model of corticofugal axonal spread. Nat Rev Neurol 9:708–714CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tan RH, Kril JJ, Fatima M, McGeachie A, McCann H, Shepherd C, Forrest SL, Affleck A, Kwok JB, Hodges JR, Kiernan MC, Halliday GM (2015) TDP-43 proteinopathies: pathological identification of brain regions differentiating clinical phenotypes. Brain 138:3110–3122CrossRefPubMedGoogle Scholar
  18. 18.
    Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M, Suh E, Van Deerlin VM, Wood EM, Baek Y, Kwong L, Lee EB, Elman L, McCluskey L, Fang L, Feldengut S, Ludolph AC, Lee VM, Braak H, Trojanowski JQ (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Brettschneider J, Del Tredici K, Irwin DJ, Grossman M, Robinson JL, Toledo JB, Lee EB, Fang L, Van Deerlin VM, Ludolph AC, Lee VM, Braak H, Trojanowski JQ (2014) Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathol 127:423–439CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ahmed RM, Irish M, Kam J, van Keizerswaard J, Bartley L, Samaras K, Hodges JR, Piguet O (2014) Quantifying the eating abnormalities in frontotemporal dementia. JAMA Neurol 71:1540–1546CrossRefPubMedGoogle Scholar
  21. 21.
    Dupuis L, Pradat PF, Ludolph AC, Loeffler JP (2011) Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 10:75–82CrossRefPubMedGoogle Scholar
  22. 22.
    Jawaid A, Murthy SB, Wilson AM, Qureshi SU, Amro MJ, Wheaton M, Simpson E, Harati Y, Strutt AM, York MK, Schulz PE (2010) A decrease in body mass index is associated with faster progression of motor symptoms and shorter survival in ALS. Amyotroph Lateral Scler 11:542–548CrossRefPubMedGoogle Scholar
  23. 23.
    Strong MJ (2008) The syndromes of frontotemporal dysfunction in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 9:323–338CrossRefPubMedGoogle Scholar
  24. 24.
    Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, van Swieten JC, Seelaar H, Dopper EG, Onyike CU, Hillis AE, Josephs KA, Boeve BF, Kertesz A, Seeley WW, Rankin KP, Johnson JK, Gorno-Tempini ML, Rosen H, Prioleau-Latham CE, Lee A, Kipps CM, Lillo P, Piguet O, Rohrer JD, Rossor MN, Warren JD, Fox NC, Galasko D, Salmon DP, Black SE, Mesulam M, Weintraub S, Dickerson BC, Diehl-Schmid J, Pasquier F, Deramecourt V, Lebert F, Pijnenburg Y, Chow TW, Manes F, Grafman J, Cappa SF, Freedman M, Grossman M, Miller BL (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kaufmann P, Levy G, Thompson JL, Delbene ML, Battista V, Gordon PH, Rowland LP, Levin B, Mitsumoto H (2005) The ALSFRSr predicts survival time in an ALS clinic population. Neurology 64:38–43CrossRefPubMedGoogle Scholar
  26. 26.
    Mioshi E, Caga J, Lillo P, Hsieh S, Ramsey E, Devenney E, Hornberger M, Hodges JR, Kiernan MC (2014) Neuropsychiatric changes precede classic motor symptoms in ALS and do not affect survival. Neurology 82:149–155CrossRefPubMedGoogle Scholar
  27. 27.
    Mioshi E, Lillo P, Yew B, Hsieh S, Savage S, Hodges JR, Kiernan MC, Hornberger M (2013) Cortical atrophy in ALS is critically associated with neuropsychiatric and cognitive changes. Neurology 80:1117–1123CrossRefPubMedGoogle Scholar
  28. 28.
    Wedderburn C, Wear H, Brown J, Mason SJ, Barker RA, Hodges J, Williams-Gray C (2008) The utility of the Cambridge Behavioural Inventory in neurodegenerative disease. J Neurol Neurosurg Psychiatry 79:500–503CrossRefPubMedGoogle Scholar
  29. 29.
    Lillo P, Mioshi E, Zoing MC, Kiernan MC, Hodges JR (2011) How common are behavioural changes in amyotrophic lateral sclerosis? Amyotroph Lateral Scler 12:45–51CrossRefPubMedGoogle Scholar
  30. 30.
    Lillo P, Savage S, Mioshi E, Kiernan MC, Hodges JR (2012) Amyotrophic lateral sclerosis and frontotemporal dementia: a behavioural and cognitive continuum. Amyotroph Lateral Scler 13:102–109CrossRefPubMedGoogle Scholar
  31. 31.
    Mioshi E, Dawson K, Mitchell J, Arnold R, Hodges JR (2006) The Addenbrooke's Cognitive Examination Revised (ACE-R): a brief cognitive test battery for dementia screening. Int J Geriatr Psychiatry 21:1078–1085CrossRefPubMedGoogle Scholar
  32. 32.
    Langmore SE, Olney RK, Lomen-Hoerth C, Miller BL (2007) Dysphagia in patients with frontotemporal lobar dementia. Arch Neurol 64:58–62CrossRefPubMedGoogle Scholar
  33. 33.
    Park Y, Park J, Kim Y, Baek H, Kim SH (2015) Association between nutritional status and disease severity using the amyotrophic lateral sclerosis (ALS) functional rating scale in ALS patients. Nutrition 31:1362–1367CrossRefPubMedGoogle Scholar
  34. 34.
    Steinke J, Tyler HR (1964) The Association of Amyotrophic Lateral Sclerosis (Motor Neuron Disease) and Carbohydrate Intolerance, a Clinical Study. Metabolism 13:1376–1381CrossRefPubMedGoogle Scholar
  35. 35.
    Jawaid A, Salamone AR, Strutt AM, Murthy SB, Wheaton M, McDowell EJ, Simpson E, Appel SH, York MK, Schulz PE (2010) ALS disease onset may occur later in patients with pre-morbid diabetes mellitus. Eur J Neurol 17:733–739CrossRefPubMedGoogle Scholar
  36. 36.
    Reyes ET, Perurena OH, Festoff BW, Jorgensen R, Moore WV (1984) Insulin resistance in amyotrophic lateral sclerosis. J Neurol Sci 63:317–324CrossRefPubMedGoogle Scholar
  37. 37.
    Dupuis L, Corcia P, Fergani A, Gonzalez De Aguilar JL, Bonnefont-Rousselot D, Bittar R, Seilhean D, Hauw JJ, Lacomblez L, Loeffler JP, Meininger V (2008) Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology 70:1004–1009CrossRefPubMedGoogle Scholar
  38. 38.
    Sutedja NA, van der Schouw YT, Fischer K, Sizoo EM, Huisman MH, Veldink JH, Van den Berg LH (2011) Beneficial vascular risk profile is associated with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 82:638–642CrossRefPubMedGoogle Scholar
  39. 39.
    Chio A, Calvo A, Ilardi A, Cavallo E, Moglia C, Mutani R, Palmo A, Galletti R, Marinou K, Papetti L, Mora G (2009) Lower serum lipid levels are related to respiratory impairment in patients with ALS. Neurology 73:1681–1685CrossRefPubMedGoogle Scholar
  40. 40.
    Desport JC, Preux PM, Truong TC, Vallat JM, Sautereau D, Couratier P (1999) Nutritional status is a prognostic factor for survival in ALS patients. Neurology 53:1059–1063CrossRefPubMedGoogle Scholar
  41. 41.
    Marin B, Desport JC, Kajeu P, Jesus P, Nicolaud B, Nicol M, Preux PM, Couratier P (2011) Alteration of nutritional status at diagnosis is a prognostic factor for survival of amyotrophic lateral sclerosis patients. J Neurol Neurosurg Psychiatry 82:628–634CrossRefPubMedGoogle Scholar
  42. 42.
    Ahmed RM, Mioshi E, Caga J, Shibata M, Zoing M, Bartley L, Piguet O, Hodges JR, Kiernan MC (2014) Body mass index delineates ALS from FTD: implications for metabolic health. J Neurol 261:1774–1780CrossRefPubMedGoogle Scholar
  43. 43.
    Bouteloup C, Desport JC, Clavelou P, Guy N, Derumeaux-Burel H, Ferrier A, Couratier P (2009) Hypermetabolism in ALS patients: an early and persistent phenomenon. J Neurol 256:1236–1242CrossRefPubMedGoogle Scholar
  44. 44.
    Vaisman N, Lusaus M, Nefussy B, Niv E, Comaneshter D, Hallack R, Drory VE (2009) Do patients with amyotrophic lateral sclerosis (ALS) have increased energy needs? J Neurol Sci 279:26–29CrossRefPubMedGoogle Scholar
  45. 45.
    Dupuis L, Oudart H, Rene F, Gonzalez de Aguilar JL, Loeffler JP (2004) Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc Natl Acad Sci USA 101:11159–11164CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Chiang PM, Ling J, Jeong YH, Price DL, Aja SM, Wong PC (2010) Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism. Proc Natl Acad Sci USA 107:16320–16324CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Xu YF, Gendron TF, Zhang YJ, Lin WL, D’Alton S, Sheng H, Casey MC, Tong J, Knight J, Yu X, Rademakers R, Boylan K, Hutton M, McGowan E, Dickson DW, Lewis J, Petrucelli L (2010) Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 30:10851–10859CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Shan X, Chiang PM, Price DL, Wong PC (2010) Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci USA 107:16325–16330CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hodges JR, Davies R, Xuereb J, Kril J, Halliday G (2003) Survival in frontotemporal dementia. Neurology 61:349–354CrossRefPubMedGoogle Scholar
  50. 50.
    Wills AM, Hubbard J, Macklin EA, Glass J, Tandan R, Simpson EP, Brooks B, Gelinas D, Mitsumoto H, Mozaffar T, Hanes GP, Ladha SS, Heiman-Patterson T, Katz J, Lou JS, Mahoney K, Grasso D, Lawson R, Yu H, Cudkowicz M, Network MDACR (2014) Hypercaloric enteral nutrition in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet 383:2065–2072CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Coll AP, Farooqi IS, O’Rahilly S (2007) The hormonal control of food intake. Cell 129:251–262CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    van der Klaauw AA, Farooqi IS (2015) The hunger genes: pathways to obesity. Cell 161:119–132CrossRefPubMedGoogle Scholar
  53. 53.
    Piguet O, Petersen A, Yin Ka Lam B, Gabery S, Murphy K, Hodges JR, Halliday GM (2011) Eating and hypothalamus changes in behavioral-variant frontotemporal dementia. Ann Neurol 69:312–319CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Cykowski MD, Takei H, Schulz PE, Appel SH, Powell SZ (2014) TDP-43 pathology in the basal forebrain and hypothalamus of patients with amyotrophic lateral sclerosis. Acta Neuropathol Commun 2:171CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lu M, Sarruf DA, Talukdar S, Sharma S, Li P, Bandyopadhyay G, Nalbandian S, Fan W, Gayen JR, Mahata SK, Webster NJ, Schwartz MW, Olefsky JM (2011) Brain PPAR-gamma promotes obesity and is required for the insulin-sensitizing effect of thiazolidinediones. Nat Med 17:618–622CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ryan KK, Li B, Grayson BE, Matter EK, Woods SC, Seeley RJ (2011) A role for central nervous system PPAR-gamma in the regulation of energy balance. Nat Med 17:623–626CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Dupuis L, Dengler R, Heneka MT, Meyer T, Zierz S, Kassubek J, Fischer W, Steiner F, Lindauer E, Otto M, Dreyhaupt J, Grehl T, Hermann A, Winkler AS, Bogdahn U, Benecke R, Schrank B, Wessig C, Grosskreutz J, Ludolph AC, Group GAS (2012) A randomized, double blind, placebo-controlled trial of pioglitazone in combination with riluzole in amyotrophic lateral sclerosis. PLoS One 7:e37885CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Jawaid A, Paganoni S, Hauser C, Schulz PE (2014) Trials of antidiabetic drugs in amyotrophic lateral sclerosis: proceed with caution? Neurodegener Dis 13:205–208PubMedGoogle Scholar
  59. 59.
    Vercruysse P, Sinniger J, El Oussini H, Scekic-Zahirovic J, Dieterle S, Dengler R, Meyer T, Zierz S, Kassubek J, Fischer W, Dreyhaupt J, Grehl T, Hermann A, Grosskreutz J, Witting A, Van Den Bosch L, Spreux-Varoquaux O, Group GAS, Ludolph AC, Dupuis L (2016) Alterations in the hypothalamic melanocortin pathway in amyotrophic lateral sclerosis. Brain 139:1106–1122CrossRefGoogle Scholar
  60. 60.
    Palamiuc L, Schlagowski A, Ngo ST, Vernay A, Dirrig-Grosch S, Henriques A, Boutillier AL, Zoll J, Echaniz-Laguna A, Loeffler JP, Rene F (2015) A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol Med 7:526–546CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Schmitt F, Hussain G, Dupuis L, Loeffler JP, Henriques A (2014) A plural role for lipids in motor neuron diseases: energy, signaling and structure. Front Cell Neurosci 8:25CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Dodge JC, Treleaven CM, Pacheco J, Cooper S, Bao C, Abraham M, Cromwell M, Sardi SP, Chuang WL, Sidman RL, Cheng SH, Shihabuddin LS (2015) Glycosphingolipids are modulators of disease pathogenesis in amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 112:8100–8105CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • R. M. Ahmed
    • 1
    • 2
    • 3
    • 4
  • J. Caga
    • 1
  • E. Devenney
    • 1
    • 2
    • 3
    • 4
  • S. Hsieh
    • 1
  • L. Bartley
    • 2
  • E. Highton-Williamson
    • 1
  • E. Ramsey
    • 1
  • M. Zoing
    • 1
  • G. M. Halliday
    • 2
    • 3
  • O. Piguet
    • 2
    • 3
    • 4
  • J. R. Hodges
    • 2
    • 3
    • 4
  • M. C. Kiernan
    • 1
  1. 1.ForeFront Clinic, Brain and Mind Centre and Sydney Medical SchoolUniversity of SydneyCamperdownAustralia
  2. 2.Neuroscience Research AustraliaSydneyAustralia
  3. 3.University of New South WalesSydneyAustralia
  4. 4.ARC Centre of Excellence in Cognition and Its DisordersThe University of New South WalesSydneyAustralia

Personalised recommendations