Advertisement

Journal of Neurology

, Volume 263, Issue 8, pp 1559–1564 | Cite as

XPR1 mutations are a rare cause of primary familial brain calcification

  • Mathieu Anheim
  • Uriel López-Sánchez
  • Donatella Giovannini
  • Anne-Claire Richard
  • Jawida Touhami
  • Ludovic N’Guyen
  • Gabrielle Rudolf
  • Anne Thibault-Stoll
  • Thierry Frebourg
  • Didier Hannequin
  • Dominique Campion
  • Jean-Luc BattiniEmail author
  • Marc SitbonEmail author
  • Gaël NicolasEmail author
Original Communication

Abstract

Mutations in XPR1, a gene encoding an inorganic phosphate exporter, have recently been identified in patients with primary familial brain calcification (PFBC). Using Sanger sequencing, we screened XPR1 in 18 unrelated patients with PFBC and no SLC20A2, PDGFB, or PDGFRB mutation. XPR1 variants were tested in an in vitro physiological complementation assay and patient blood cells were assessed ex vivo for phosphate export. We identified a novel c.260T > C, p.(Leu87Pro) XPR1 variant in a 41-year-old man complaining of micrographia and dysarthria and demonstrating mild parkinsonism, cerebellar ataxia and executive dysfunction. Brain 123I-Ioflupane scintigraphy showed marked dopaminergic neuron loss. Peripheral blood cells from the patient exhibited decreased phosphate export. XPR1 in which we introduced the mutation was not detectable at the cell surface and did not lead to phosphate export. These results confirm that loss of XPR1-mediated phosphate export function causes PFBC, occurring in less than 8 % of cases negative for the other genes, and may be responsible for parkinsonism.

Keywords

Primary familial brain calcification Idiopathic basal ganglia calcification Phosphate export XPR1 Fahr disease 

Notes

Acknowledgments

We are grateful to all collaborators who sent blood samples and medical charts, and all members of our labs for constant support and helpful discussions. This work was supported by grants from the Fondation pour la Recherche Médicale (FRM) and ANR Blanc (to M.S.); Ligue Nationale contre le Cancer (Comité de l’Hérault) and Agence Nationale de la Recherche JCJC (to J.-L.B.); U.L.-S. was supported by Labex EpiGenMed (ANR-10-LABX-12-01) and Secretaría de Ciencia, Tecnología e Innovación de la Ciudad de México (CM-102/15 SECITI 030/2016) fellowships; D.G. was supported by FRM, Institut National du Cancer (INCa), and Labex GR-Ex (ANR-11-LABX-0051) fellowships; Labex is funded by the program ‘Investissements d’Avenir’ of the French National Research Agency. J.-L.B. and M.S. are supported by INSERM; G.N., D.C., T.F., and D.H. are supported by Inserm, the University Hospital of Rouen and the French CNR-MAJ.

Compliance with ethical standards

Conflicts of interest

J-L.B. and M.S. are inventors on provisional a patent describing the use of ligands, including XRBD, for the analysis of human cells (PCT/EP2010/050139); M.S. is a co-founder of METAFORA-biosystems, a start-up company that focuses on metabolite transporters under physiological and pathological conditions.

Supplementary material

415_2016_8166_MOESM1_ESM.jpg (295 kb)
Supplementary material 1 Figure. a) Uptake of inorganic 33P (Pi) assay performed in HEK293T cells transfected with siRNA directed against either luciferase (siLUC) or XPR1 (siXPR1), or a combination of siXPR1 with an expression vector encoding HA-tagged WT XPR1 or the L87P mutant human XPR1. Results are shown as mean ± s.e.m. in a representative experiment (n = 3); b) Cell surface detection of PiT1 and PiT2 in HEK293T transfected cells as in (a). Specific binding with KoRBD, the PiT1 ligand derived from the receptor-binding domain of KoRV-MLV Env, or with ASU, the PiT2 ligand derived from the Amphotropic-MLV Env (grey histograms, upper and lower panels, respectively). Grey histograms represent the non-specific staining with the secondary IgG antibody. Numbers indicate the specific mean fluorescence intensity of a representative experiment (n = 3). (JPEG 295 kb)

References

  1. 1.
    Nicolas G, Pottier C, Charbonnier C, Guyant-Marechal L, Le Ber I, Pariente J, Labauge P, Ayrignac X, Defebvre L, Maltete D, Martinaud O, Lefaucheur R, Guillin O, Wallon D, Chaumette B, Rondepierre P, Derache N, Fromager G, Schaeffer S, Krystkowiak P, Verny C, Jurici S, Sauvee M, Verin M, Lebouvier T, Rouaud O, Thauvin-Robinet C, Rousseau S, Rovelet-Lecrux A, Frebourg T, Campion D, Hannequin D (2013) Phenotypic spectrum of probable and genetically-confirmed idiopathic basal ganglia calcification. Brain 136(Pt 11):3395–3407CrossRefPubMedGoogle Scholar
  2. 2.
    Sobrido MJ, Hopfer S, Geschwind DH (1993–2004) Familial Idiopathic Basal Ganglia Calcification. In: Pagon RA, Bird TD, Dolan CR, et al (eds) GeneReviews™ [Internet] Seattle (WA): University of Washington, SeattleGoogle Scholar
  3. 3.
    Nicolas G, Charbonnier C, de Lemos RR, Richard AC, Guillin O, Wallon D, Legati A, Geschwind D, Coppola G, Frebourg T, Campion D, de Oliveira JR, Hannequin D (2015) Brain calcification process and phenotypes according to age and sex: lessons from SLC20A2, PDGFB, and PDGFRB mutation carriers. Am J Med Genet B Neuropsychiatr Genet 168(7):586–594CrossRefPubMedGoogle Scholar
  4. 4.
    Wang C, Li Y, Shi L, Ren J, Patti M, Wang T, de Oliveira JR, Sobrido MJ, Quintans B, Baquero M, Cui X, Zhang XY, Wang L, Xu H, Wang J, Yao J, Dai X, Liu J, Zhang L, Ma H, Gao Y, Ma X, Feng S, Liu M, Wang QK, Forster IC, Zhang X, Liu JY (2012) Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat Genet 44(3):254–256CrossRefPubMedGoogle Scholar
  5. 5.
    Nicolas G, Pottier C, Maltete D, Coutant S, Rovelet-Lecrux A, Legallic S, Rousseau S, Vaschalde Y, Guyant-Marechal L, Augustin J, Martinaud O, Defebvre L, Krystkowiak P, Pariente J, Clanet M, Labauge P, Ayrignac X, Lefaucheur R, Le Ber I, Frebourg T, Hannequin D, Campion D (2013) Mutation of the PDGFRB gene as a cause of idiopathic basal ganglia calcification. Neurology 80(2):181–187CrossRefPubMedGoogle Scholar
  6. 6.
    Keller A, Westenberger A, Sobrido MJ, Garcia-Murias M, Domingo A, Sears RL, Lemos RR, Ordonez-Ugalde A, Nicolas G, da Cunha JE, Rushing EJ, Hugelshofer M, Wurnig MC, Kaech A, Reimann R, Lohmann K, Dobricic V, Carracedo A, Petrovic I, Miyasaki JM, Abakumova I, Mae MA, Raschperger E, Zatz M, Zschiedrich K, Klepper J, Spiteri E, Prieto JM, Navas I, Preuss M, Dering C, Jankovic M, Paucar M, Svenningsson P, Saliminejad K, Khorshid HR, Novakovic I, Aguzzi A, Boss A, Le Ber I, Defer G, Hannequin D, Kostic VS, Campion D, Geschwind DH, Coppola G, Betsholtz C, Klein C, Oliveira JR (2013) Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nat Genet 45(9):1077–1082CrossRefPubMedGoogle Scholar
  7. 7.
    Legati A, Giovannini D, Nicolas G, Lopez-Sanchez U, Quintans B, Oliveira JR, Sears RL, Ramos EM, Spiteri E, Sobrido MJ, Carracedo A, Castro-Fernandez C, Cubizolle S, Fogel BL, Goizet C, Jen JC, Kirdlarp S, Lang AE, Miedzybrodzka Z, Mitarnun W, Paucar M, Paulson H, Pariente J, Richard AC, Salins NS, Simpson SA, Striano P, Svenningsson P, Tison F, Unni VK, Vanakker O, Wessels MW, Wetchaphanphesat S, Yang M, Boller F, Campion D, Hannequin D, Sitbon M, Geschwind DH, Battini JL, Coppola G (2015) Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. Nat Genet 47(6):579–581CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Battini JL, Rasko JE, Miller AD (1999) A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction. Proc Natl Acad Sci USA 96(4):1385–1390CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kavanaugh MP, Miller DG, Zhang W, Law W, Kozak SL, Kabat D, Miller AD (1994) Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci USA 91(15):7071–7075CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Giovannini D, Touhami J, Charnet P, Sitbon M, Battini JL (2013) Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans. Cell Rep 3(6):1866–1873CrossRefPubMedGoogle Scholar
  11. 11.
    Hsu SC, Sears RL, Lemos RR, Quintans B, Huang A, Spiteri E, Nevarez L, Mamah C, Zatz M, Pierce KD, Fullerton JM, Adair JC, Berner JE, Bower M, Brodaty H, Carmona O, Dobricic V, Fogel BL, Garcia-Estevez D, Goldman J, Goudreau JL, Hopfer S, Jankovic M, Jauma S, Jen JC, Kirdlarp S, Klepper J, Kostic V, Lang AE, Linglart A, Maisenbacher MK, Manyam BV, Mazzoni P, Miedzybrodzka Z, Mitarnun W, Mitchell PB, Mueller J, Novakovic I, Paucar M, Paulson H, Simpson SA, Svenningsson P, Tuite P, Vitek J, Wetchaphanphesat S, Williams C, Yang M, Schofield PR, de Oliveira JR, Sobrido MJ, Geschwind DH, Coppola G (2013) Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification. Neurogenetics 14(1):11–22CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Deng H, Zheng W, Jankovic J (2015) Genetics and molecular biology of brain calcification. Ageing Res Rev 22:20–38CrossRefPubMedGoogle Scholar
  13. 13.
    Manel N, Kim FJ, Kinet S, Taylor N, Sitbon M, Battini JL (2003) The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell 115(4):449–459CrossRefPubMedGoogle Scholar
  14. 14.
    Miller AD, Rosman GJ (1989) Improved retroviral vectors for gene transfer and expression. Biotechniques. 7(9):980–982 4–6, 9–90 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Petit V, Massonnet G, Maciorowski Z, Touhami J, Thuleau A, Nemati F, Laval J, Chateau-Joubert S, Servely JL, Vallerand D, Fontaine JJ, Taylor N, Battini JL, Sitbon M, Decaudin D (2013) Optimization of tumor xenograft dissociation for the profiling of cell surface markers and nutrient transporters. Lab Invest 93(5):611–621CrossRefPubMedGoogle Scholar
  16. 16.
    Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS, Kremer B, Mariotti C, Melegh B, Pandolfo M, Rakowicz M, Ribai P, Rola R, Schols L, Szymanski S, van de Warrenburg BP, Durr A, Klockgether T, Fancellu R (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66(11):1717–1720CrossRefPubMedGoogle Scholar
  17. 17.
    Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee ALQA (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Manyam BV, Walters AS, Narla KR (2001) Bilateral striopallidodentate calcinosis: clinical characteristics of patients seen in a registry. Mov Disord 16(2):258–264CrossRefPubMedGoogle Scholar
  19. 19.
    Vaughan AE, Mendoza R, Aranda R, Battini JL, Miller AD (2012) Xpr1 is an atypical G-protein-coupled receptor that mediates xenotropic and polytropic murine retrovirus neurotoxicity. J Virol 86(3):1661–1669CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jensen N, Schroder HD, Hejbol EK, Fuchtbauer EM, de Oliveira JR, Pedersen L (2013) Loss of function of slc20a2 associated with familial idiopathic Basal Ganglia calcification in humans causes brain calcifications in mice. J Mol Neurosci 51(3):994–999CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wallingford MC, Chia J, Leaf EM, Borgeia S, Chavkin NW, Sawangmake C, Marro K, Cox TC, Speer MY, Giachelli CM (2016) SLC20A2 deficiency in mice leads to elevated phosphate levels in cerbrospinal fluid and glymphatic pathway-associated arteriolar calcification, and recapitulates human idiopathic basal ganglia calcification. Brain Pathol. doi: 10.1111/bpa.12362 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mathieu Anheim
    • 1
    • 2
    • 3
  • Uriel López-Sánchez
    • 4
    • 5
    • 6
    • 7
  • Donatella Giovannini
    • 4
    • 5
    • 6
    • 7
  • Anne-Claire Richard
    • 8
    • 9
    • 10
  • Jawida Touhami
    • 4
    • 5
    • 6
    • 7
  • Ludovic N’Guyen
    • 1
    • 2
    • 3
  • Gabrielle Rudolf
    • 1
    • 2
    • 3
  • Anne Thibault-Stoll
    • 1
  • Thierry Frebourg
    • 8
    • 9
    • 11
  • Didier Hannequin
    • 8
    • 9
    • 10
    • 11
    • 12
  • Dominique Campion
    • 8
    • 9
    • 10
    • 13
  • Jean-Luc Battini
    • 4
    • 5
    • 6
    • 7
    Email author
  • Marc Sitbon
    • 4
    • 5
    • 6
    • 7
    Email author
  • Gaël Nicolas
    • 8
    • 9
    • 10
    • 11
    Email author
  1. 1.Département de NeurologieHôpital de HautepierreStrasbourgFrance
  2. 2.Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de StrasbourgIllkirchFrance
  3. 3.Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance
  4. 4.Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535MontpellierFrance
  5. 5.Université de MontpellierMontpellierFrance
  6. 6.Laboratory of Excellence EpiGenMedMontpellierFrance
  7. 7.Laboratory of Excellence GR-ExParisFrance
  8. 8.Faculté de Médecine, Inserm U1079, University of Rouen, IRIB, Normandy UniversityRouenFrance
  9. 9.Normandy Centre for Genomic Medicine and Personalized MedicineRouenFrance
  10. 10.CNR-MAJ, Rouen University HospitalRouenFrance
  11. 11.Department of GeneticsRouen University HospitalRouenFrance
  12. 12.Department of NeurologyRouen University HospitalRouenFrance
  13. 13.Department of ResearchRouvray Psychiatric HospitalSotteville-Lès-RouenFrance

Personalised recommendations