Advertisement

Journal of Neurology

, Volume 263, Issue 6, pp 1195–1203 | Cite as

Deep brain stimulation improves gait velocity in Parkinson’s disease: a systematic review and meta-analysis

  • Jaimie A. Roper
  • Nyeonju Kang
  • Juliana Ben
  • James H. Cauraugh
  • Michael S. Okun
  • Chris J. Hass
Original Communication

Abstract

In Parkinson’s disease (PD), slow gait speed is significantly related to clinical ratings of disease severity, impaired performance of daily activities, as well as increased overall disability. Conducting a meta-analysis on gait speed is an objective and quantitative technique to summarize the effectiveness of DBS and to determine the effect sizes for future studies. We conducted a systematic review and meta-analysis that analyzed the effects of deep brain stimulation (DBS) surgery on gait speed in patients with PD to gain fundamental insight into the nature of therapeutic effectiveness. A random effects model meta-analysis on 27 studies revealed a significant overall standardized mean difference medium effect size equal to 0.60 (SE = 0.06; p < 0.0001; Z = 10.58). Based on our synthesis of the 27 studies, we determined the following: (1) a significant and medium effect size indicating DBS improves gait speed; (2) DBS improved gait speed regardless of whether the patients were tested in the on or off medication state; (3) both bilateral and unilateral DBS led to gait speed improvement; (4) the effects of DBS on gait speed in the data collection sessions after surgery (DBS on vs. off) were comparable with data collection before surgery (before surgery vs. DBS after surgery); and (5) when evaluating the effects of DBS and medication on gait speed suprathreshold doses were comparable to normal dosages of medication and DBS. The current analysis provides objective evidence that both unilateral and bilateral DBS provide a therapeutic benefit on gait speed in persons with PD.

Keywords

Deep brain stimulation Parkinson's Gait Gait speed 

Notes

Compliance with ethical standards

Conflict of interest

Full financial disclosure for the past 12 months: JAR, NK, JB, JHC, and CJH do not have any disclosures. MSO serves as a consultant for the National Parkinson Foundation, and has received research Grants from NIH, NPF, the Michael J. Fox Foundation, the Parkinson Alliance, Smallwood Foundation, the Bachmann-Strauss Foundation, the Tourette Syndrome Association, and the UF Foundation. Dr. Okun has previously received honoraria, but in the past >60 months has received no support from industry. Dr. Okun has received royalties for publications with Demos, Manson, Amazon, Smashwords, Books4Patients, and Cambridge (movement disorders books). Dr. Okun is an associate editor for New England Journal of Medicine Journal Watch Neurology. Dr. Okun has participated in CME and educational activities on movement disorders (in the last 36) months sponsored by PeerView, Prime, Quantia, Henry Stewart, and by Vanderbilt University. The institution and not Dr. Okun receives grants from Medtronic, Abbvie, and ANS/St. Jude, and the PI has no financial interest in these grants. Dr. Okun has participated as a site PI and/or co-I for several NIH, foundation, and industry sponsored trials over the years but has not received honoraria.

Ethical standards

The manuscript does not contain clinical studies or patient data.

References

  1. 1.
    Hass CJ, Malczak P, Nocera J, Stegemöller EL, Wagle Shukla A, Malaty I, Jacobson IV CE, Okun MS, McFarland N (2012) Quantitative normative gait data in a large cohort of ambulatory persons with Parkinson’s disease. PLoS One. doi: 10.1371/journal.pone.0042337 Google Scholar
  2. 2.
    Plummer-D’Amato P, Altmann LJ, Reilly K (2011) Dual-task effects of spontaneous speech and executive function on gait in aging: exaggerated effects in slow walkers. Gait Posture. doi: 10.1016/j.gaitpost.2010.11.011 Google Scholar
  3. 3.
    Hollman JH, McDade EM, Petersen RC (2011) Normative spatiotemporal gait parameters in older adults. Gait Posture. doi: 10.1016/j.gaitpost.2011.03.024 PubMedPubMedCentralGoogle Scholar
  4. 4.
    Brusse KJ, Zimdars S, Zalewski KR, Steffen TM (2005) Testing functional performance in people with Parkinson disease. Phys Ther 85:134–141PubMedGoogle Scholar
  5. 5.
    Himann JE, Cunningham DA, Rechnitzer PA, Paterson DH (1988) Age-related changes in speed of walking. Med Sci Sports Exerc 20:161–166CrossRefPubMedGoogle Scholar
  6. 6.
    White DK, Neogi T, Nevitt MC, Peloquin CE, Zhu Y, Boudreau RM, Cauley JA, Ferrucci L, Harris TB, Satterfield SM, Simonsick EM, Strotmeyer ES, Zhang Y (2013) Trajectories of gait speed predict mortality in well-functioning older adults: the Health Aging and Body Composition study. J Gerontol A Biol Sci Med Sci. doi: 10.1093/gerona/gls197 Google Scholar
  7. 7.
    Lim LI, van Wegen EE, de Goede CJ, Jones D, Rochester L, Hetherington V, Nieuwboer A, Willems AM, Kwakkel G (2005) Measuring gait and gait-related activities in Parkinson’s patients own home environment: a reliability, responsiveness and feasibility study. Parkinsonism Relat Disord 11:19–24CrossRefPubMedGoogle Scholar
  8. 8.
    Morris ME, Matyas TA, Iansek R, Summers JJ (1996) Temporal stability of gait in Parkinson’s disease. Phys Ther 76:763–777PubMedGoogle Scholar
  9. 9.
    Studenski S, Perera S, Wallace D, Chandler JM, Duncan PW, Rooney E, Fox M, Guralnik JM (2003) Physical performance measures in the clinical setting. J Am Geriatr Soc 51:314–322CrossRefPubMedGoogle Scholar
  10. 10.
    Elbers RG, van Wegen EE, Verhoef J, Kwakkel G (2013) Is gait speed a valid measure to predict community ambulation in patients with Parkinson’s disease? J Rehabil Med. doi: 10.2340/16501977-1123 PubMedGoogle Scholar
  11. 11.
    Ellis TD, Cavanaugh JT, Earhart GM, Ford MP, Foreman KB, Thackeray A, Thiese MS, Dibble LE (2016) Identifying clinical measures that most accurately reflect the progression of disability in Parkinson disease. Parkinsonism Relat Disord 25:65–71CrossRefPubMedGoogle Scholar
  12. 12.
    Tan D, Danoudis M, McGinley J, Morris ME (2012) Relationships between motor aspects of gait impairments and activity limitations in people with Parkinson’s disease: a systematic review. Parkinsonism Relat Disord. doi: 10.1016/j.parkreldis.2011.07.014 Google Scholar
  13. 13.
    Nisenzon AN, Robinson ME, Bowers D, Banou E, Malaty I, Okun MS (2011) Measurement of patient-centered outcomes in Parkinson’s disease: what do patients really want from their treatment? Parkinsonism Relat Disord. doi: 10.1016/j.parkreldis.2010.09.005 PubMedPubMedCentralGoogle Scholar
  14. 14.
    Borenstein M (2009) Introduction to meta-analysis. Wiley, ChichesterCrossRefGoogle Scholar
  15. 15.
    Rosenthal R (1995) Writing meta-analytic reviews. Psychol Bull 118:183–192CrossRefGoogle Scholar
  16. 16.
    Rosenthal R, DiMatteo MR (2001) Meta-analysis: recent developments in quantitative methods for literature reviews. Annu Rev Psychol. doi: 10.1146/annurev.psych.52.1.59 PubMedGoogle Scholar
  17. 17.
    Rosenthal R, Hiller JB, Bornstein RF, Berry DT, Brunell-Neuleib S (2001) Meta-analytic methods, the Rorschach, and the MMPI. Psychol Assess 13:449–451CrossRefPubMedGoogle Scholar
  18. 18.
    Borenstein M, Hedges LV, Higgins JP, Rothstein HR (2010) A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. doi: 10.1002/jrsm.12 PubMedGoogle Scholar
  19. 19.
    Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic Press, OrlandoGoogle Scholar
  20. 20.
    Sutton AJ (2000) Methods for meta-analysis in medical research. Wiley, ChichesterGoogle Scholar
  21. 21.
    Cumming G, Fidler F, Kalinowski P, Lai J (2012) The statistical recommendations of the american psychological association publication manual: effect sizes, confidence intervals, and meta-analysis. Aust J Psychol 64:138–146. doi: 10.1111/j.1742-9536.2011.00037.x CrossRefGoogle Scholar
  22. 22.
    Cohen J (1988) Statistical power analysis for the behavioral sciences. L. Erlbaum Associates, HillsdaleGoogle Scholar
  23. 23.
    Kelly VE, Israel SM, Samii A, Slimp JC, Goodkin R, Shumway-Cook A (2010) Assessing the effects of subthalamic nucleus stimulation on gait and mobility in people with Parkinson disease. Disabil Rehabil. doi: 10.3109/09638280903374139 Google Scholar
  24. 24.
    Peppe A, Pierantozzi M, Chiavalon C, Marchetti F, Caltagirone C, Musicco M, Stanzione P, Stefani A (2010) Deep brain stimulation of the pedunculopontine tegmentum and subthalamic nucleus: effects on gait in Parkinson’s disease. Gait Posture. doi: 10.1016/j.gaitpost.2010.07.012 PubMedGoogle Scholar
  25. 25.
    Krystkowiak P, Blatt JL, Bourriez JL, Duhamel A, Perina M, Blond S, Guieu JD, Destee A, Defebvre L (2003) Effects of subthalamic nucleus stimulation and levodopa treatment on gait abnormalities in Parkinson disease. Arch Neurol 60:80–84CrossRefPubMedGoogle Scholar
  26. 26.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ. doi: 10.1136/bmj.327.7414.557 Google Scholar
  27. 27.
    Higgins JP, Green S (2008) Cochrane handbook for systematic reviews of interventions. Wiley, New JerseyCrossRefGoogle Scholar
  28. 28.
    Fanelli D (2009) How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data. PLoS ONE. doi: 10.1371/journal.pone.0005738 PubMedPubMedCentralGoogle Scholar
  29. 29.
    Sterne JA, Egger M, Smith GD (2001) Systematic reviews in health care: investigating and dealing with publication and other biases in meta-analysis. BMJ 323:101–105CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463CrossRefPubMedGoogle Scholar
  31. 31.
    Rothstein H, Sutton AJ, Borenstein M (2005) Publication bias in meta-analysis: prevention, assessment and adjustments. Wiley, Hoboken, NJCrossRefGoogle Scholar
  32. 32.
    Piper M, Abrams GM, Marks Jr WJ (2005) Deep brain stimulation for the treatment of Parkinson’s disease: overview and impact on gait and mobility. NeuroRehabilitationGoogle Scholar
  33. 33.
    Liu W, McIntire K, Kim SH, Zhang J, Dascalos S, Lyons KE, Pahwa R (2005) Quantitative assessments of the effect of bilateral subthalamic stimulation on multiple aspects of sensorimotor function for patients with Parkinson’s disease. Parkinsonism Relat Disord 11:503–508CrossRefPubMedGoogle Scholar
  34. 34.
    Faist M, Xie J, Kurz D, Berger W, Maurer C, Pollak P, Lucking CH (2001) Effect of bilateral subthalamic nucleus stimulation on gait in Parkinson’s disease. Brain 124:1590–1600CrossRefPubMedGoogle Scholar
  35. 35.
    Xie J, Krack P, Benabid AL, Pollak P (2001) Effect of bilateral subthalamic nucleus stimulation on parkinsonian gait. J Neurol 248:1068–1072CrossRefPubMedGoogle Scholar
  36. 36.
    Okun MS (2012) Deep-brain stimulation for Parkinson’s disease. N Engl J Med. doi: 10.1056/NEJMct1208070 PubMedGoogle Scholar
  37. 37.
    Alberts JL, Hass CJ, Vitek JL, Okun MS (2008) Are two leads always better than one: an emerging case for unilateral subthalamic deep brain stimulation in Parkinson’s disease. Exp Neurol. doi: 10.1016/j.expneurol.2008.07.019 PubMedPubMedCentralGoogle Scholar
  38. 38.
    Taba HA, Wu SS, Foote KD, Hass CJ, Fernandez HH, Malaty IA, Rodriguez RL, Dai Y, Zeilman PR, Jacobson CE, Okun MS (2010) A closer look at unilateral versus bilateral deep brain stimulation: results of the National Institutes of Health COMPARE cohort. J Neurosurg. doi: 10.3171/2010.8.JNS10312 PubMedGoogle Scholar
  39. 39.
    Okun MS, Foote KD (2010) Parkinson’s disease DBS: what, when, who and why? The time has come to tailor DBS targets. Expert Rev Neurother 10:1847–1857CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bastian AJ, Kelly VE, Revilla FJ, Perlmutter JS, Mink JW (2003) Different effects of unilateral versus bilateral subthalamic nucleus stimulation on walking and reaching in Parkinson’s disease. Mov Disord. doi: 10.1002/mds.10493 Google Scholar
  41. 41.
    Chung SJ, Jeon SR, Kim SR, Sung YH, Lee MC (2006) Bilateral effects of unilateral subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Eur Neurol 56:127–132CrossRefPubMedGoogle Scholar
  42. 42.
    Germano IM, Gracies JM, Weisz DJ, Tse W, Koller WC, Olanow CW (2004) Unilateral stimulation of the subthalamic nucleus in Parkinson disease: a double-blind 12-month evaluation study. J Neurosurg. doi: 10.3171/jns.2004.101.1.0036 PubMedGoogle Scholar
  43. 43.
    Kumar R, Lozano AM, Sime E, Halket E, Lang AE (1999) Comparative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation. Neurology 53:561–566CrossRefPubMedGoogle Scholar
  44. 44.
    Tabbal SD, Ushe M, Mink JW, Revilla FJ, Wernle AR, Hong M, Karimi M, Perlmutter JS (2008) Unilateral subthalamic nucleus stimulation has a measurable ipsilateral effect on rigidity and bradykinesia in Parkinson disease. Exp Neurol. doi: 10.1016/j.expneurol.2008.01.024 Google Scholar
  45. 45.
    Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438CrossRefPubMedGoogle Scholar
  46. 46.
    Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol. doi: 10.1016/S1474-4422(08)70291-6 Google Scholar
  47. 47.
    Allert N, Volkmann J, Dotse S, Hefter H, Sturm V, Freund HJ (2001) Effects of bilateral pallidal or subthalamic stimulation on gait in advanced Parkinson’s disease. Mov Disord. doi: 10.1002/mds.1222 Google Scholar
  48. 48.
    Goff LK, Jouve L, Melon C, Salin P (2009) Rationale for targeting the thalamic centre-median parafascicular complex in the surgical treatment of Parkinson’s disease. Parkinsonism Relat Disord. doi: 10.1016/S1353-8020(09)70807-7 PubMedGoogle Scholar
  49. 49.
    Plaha P, Khan S, Gill SS (2008) Bilateral stimulation of the caudal zona incerta nucleus for tremor control. J Neurol Neurosurg Psychiatry. (jnnp.2006.112334 [pii]) Google Scholar
  50. 50.
    Mazzone P, Paoloni M, Mangone M, Santilli V, Insola A, Fini M, Scarnati E (2014) Unilateral deep brain stimulation of the pedunculopontine tegmental nucleus in idiopathic Parkinson’s disease: effects on gait initiation and performance. Gait Posture. doi: 10.1016/j.gaitpost.2014.05.002 PubMedGoogle Scholar

References marked with an asterisk indicate studies included in the meta-analysis. Asterisks do not precede the in-text citations to studies

  1. 51.
    *Carpinella I, Crenna P, Marzegan A, Rabuffetti M, Rizzone M, Lopiano L, Ferrarin M (2007) Effect of L-dopa and subthalamic nucleus stimulation on arm and leg swing during gait in Parkinson’s Disease. Conf Proc IEEE Eng Med Biol Soc. doi: 10.1109/IEMBS.2007.4353888
  2. 52.
    *Fasano A, Herzog J, Seifert E, Stolze H, Falk D, Reese R, Volkmann J, Deuschl G (2011) Modulation of gait coordination by subthalamic stimulation improves freezing of gait. Mov Disord. doi: 10.1002/mds.23583
  3. 53.
    *Ferrarin M, Rizzone M, Lopiano L, Recalcati M, Pedotti A (2004) Effects of subthalamic nucleus stimulation and L-dopa in trunk kinematics of patients with Parkinson’s disease. Gait Posture. doi: 10.1016/S0966-6362(03)00058-4
  4. 54.
    *Ferrarin M, Rizzone M, Bergamasco B, Lanotte M, Recalcati M, Pedotti A, Lopiano L (2005) Effects of bilateral subthalamic stimulation on gait kinematics and kinetics in Parkinson’s disease. Exp Brain Res. doi: 10.1007/s00221-004-2036-5
  5. 55.
    *Ferrarin M, Carpinella I, Rabuffetti M, Rizzone M, Lopiano L, Crenna P (2007) Unilateral and bilateral subthalamic nucleus stimulation in Parkinson’s disease: effects on EMG signals of lower limb muscles during walking. IEEE Trans Neural Syst Rehabil Eng. doi: 10.1109/TNSRE.2007.897000
  6. 56.
    *Hausdorff JM, Gruendlinger L, Scollins L, O’Herron S, Tarsy D (2009) Deep brain stimulation effects on gait variability in Parkinson’s disease. Mov Disord. doi: 10.1002/mds.22554
  7. 57.
    *Hill KK, Campbell MC, McNeely ME, Karimi M, Ushe M, Tabbal SD, Hershey T, Flores HP, Hartlein JM, Lugar HM, Revilla FJ, Videen TO, Earhart GM, Perlmutter JS (2013) Cerebral blood flow responses to dorsal and ventral STN DBS correlate with gait and balance responses in Parkinson’s disease. Exp Neurol. doi: 10.1016/j.expneurol.2012.12.003
  8. 58.
    * Iansek R, Rosenfeld JV, Huxham FE (2002) Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. Med J Aust. (ian10553_fm [pii]) Google Scholar
  9. 59.
    *Johnsen EL, Mogensen PH, Sunde NA, Ostergaard K (2009) Improved asymmetry of gait in Parkinson’s disease with DBS: gait and postural instability in Parkinson’s disease treated with bilateral deep brain stimulation in the subthalamic nucleus. Mov Disord. doi: 10.1002/mds.22419
  10. 60.
    *Johnsen EL, Sunde N, Mogensen PH, Ostergaard K (2010) MRI verified STN stimulation site–gait improvement and clinical outcome. Eur J Neurol. doi: 10.1111/j.1468-1331.2010.02962.x
  11. 61.
    *Lohnes CA, Earhart GM (2012) Effect of subthalamic deep brain stimulation on turning kinematics and related saccadic eye movements in Parkinson disease. Exp Neurol. doi: 10.1016/j.expneurol.2012.05.001
  12. 62.
    *Lubik S, Fogel W, Tronnier V, Krause M, Konig J, Jost WH (2006) Gait analysis in patients with advanced Parkinson disease: different or additive effects on gait induced by levodopa and chronic STN stimulation. J Neural Transm. doi: 10.1007/s00702-005-0310-8
  13. 63.
    *McNeely ME, Hershey T, Campbell MC, Tabbal SD, Karimi M, Hartlein JM, Lugar HM, Revilla FJ, Perlmutter JS, Earhart GM (2011) Effects of deep brain stimulation of dorsal versus ventral subthalamic nucleus regions on gait and balance in Parkinson’s disease. J Neurol Neurosurg Psychiatry. doi: 10.1136/jnnp.2010.232900
  14. 64.
    *Muniz AM, Liu H, Lyons KE, Pahwa R, Liu W, Nadal J (2010) Quantitative evaluation of the effects of subthalamic stimulation on gait in Parkinson’s disease patients using principal component analysis. Int J Neurosci. doi: 10.3109/00207454.2010.504904
  15. 65.
    *Rocchi L, Carlson-Kuhta P, Chiari L, Burchiel KJ, Hogarth P, Horak FB (2012) Effects of deep brain stimulation in the subthalamic nucleus or globus pallidus internus on step initiation in Parkinson disease: laboratory investigation. J Neurosurg. doi: 10.3171/2012.8.JNS112006
  16. 66.
    *Rochester L, Chastin SF, Lord S, Baker K, Burn DJ (2012) Understanding the impact of deep brain stimulation on ambulatory activity in advanced Parkinson’s disease. J Neurol. doi: 10.1007/s00415-011-6301-9
  17. 67.
    *Seri-Fainshtat E, Israel Z, Weiss A, Hausdorff JM (2013) Impact of sub-thalamic nucleus deep brain stimulation on dual tasking gait in Parkinson’s disease. J Neuroeng Rehabil. doi: 10.1186/1743-0003-10-38
  18. 68.
    *Stolze H, Klebe S, Poepping M, Lorenz D, Herzog J, Hamel W, Schrader B, Raethjen J, Wenzelburger R, Mehdorn HM, Deuschl G, Krack P (2001) Effects of bilateral subthalamic nucleus stimulation on parkinsonian gait. NeurologyGoogle Scholar
  19. 69.
    Vallabhajosula S, Haq IU, Hwynn N, Oyama G, Okun M, Tillman MD, Hass CJ (2015) Low-frequency versus high-frequency subthalamic nucleus deep brain stimulation on postural control and gait in Parkinson’s disease: a quantitative study. Brain Stimul 8:64–75. doi: 10.1016/j.brs.2014.10.011 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jaimie A. Roper
    • 1
    • 2
  • Nyeonju Kang
    • 1
  • Juliana Ben
    • 1
    • 2
  • James H. Cauraugh
    • 1
  • Michael S. Okun
    • 2
    • 3
    • 4
  • Chris J. Hass
    • 1
    • 2
  1. 1.Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleUSA
  2. 2.Center for Movement Disorders and NeurorestorationUniversity of FloridaGainesvilleUSA
  3. 3.Department of NeurologyUniversity of FloridaGainesvilleUSA
  4. 4.Department of NeurosurgeryUniversity of FloridaGainesvilleUSA

Personalised recommendations