Advertisement

Journal of Neurology

, Volume 263, Issue 6, pp 1241–1254 | Cite as

Recent advances in amyotrophic lateral sclerosis

  • Nilo Riva
  • Federica Agosta
  • Christian Lunetta
  • Massimo Filippi
  • Angelo Quattrini
Open Access
Neurological Update

Abstract

ALS is a relentlessly progressive and fatal disease, with no curative therapies available to date. Symptomatic and palliative care, provided in a multidisciplinary context, still remains the cornerstone of ALS management. However, our understanding of the molecular mechanisms underlying the disease has advanced greatly over the past years, giving new hope for the development of novel diagnostic and therapeutic approaches. Here, we have reviewed the most recent studies that have contributed to improving both clinical management and our understanding of ALS pathogenesis.

Keywords

Motor neuron disease Pathogenesis ALS genetics Clinical management Neuroimaging 

Introduction

Motor neuron disease (MND) embraces a heterogeneous group of neurological disorders defined and characterized by the degeneration of motor neurons. With an incidence of ~2.16 per 100,000 person-years and a median survival time of 3–5 years, amyotrophic lateral sclerosis (ALS) is the most common and severe form, involving both lower (LMN) and upper motor neurons (UMN). This review summarizes the recent highlights in ALS research published in the Journal of Neurology and other relevant scientific Journals during the last 18 months. For an overview of MND and ALS, readers are referred to other more general reviews [1, 2, 3].

Proposed disease mechanisms

Significant advances have been made in our understanding of MND pathogenesis, believed to be a complex disease involving an intricate combination of exogenous environmental factors and common and rare genetic variations [4]. About 10 % of ALS cases are classified as familial (FALS), whereas the remaining 90 % appear to be sporadic (SALS) and randomly occurring in the community. While a genetic etiology may now be identified in two-thirds of FALS and ~10 % of apparently sporadic cases, the role of genetic and environmental factors in sporadic cases is still unknown [5, 6, 7].

Molecular genetics

Since the identification in 1993 of mutations of the SOD1 gene as being responsible for some forms of autosomal dominant FALS [8], more than 30 other genes linked to ALS have been identified [9].

The identification of TDP-43 protein as a major component of the neuronal inclusions of both ALS and fronto-temporal dementia (FTD) not only provided pathological evidence that these apparently distinct conditions constitute a disease spectrum but also led to the identification of a mutation of TARDBP gene as responsible for ~4 % of FALS cases. Subsequent studies demonstrated that mutations in the TARDBP gene may be responsible not only for FALS and a small percentage of SALS cases, but also for FTD, FTD-ALS and ALS-FTD cases [10, 11]. Interestingly, a recent study and review of the literature, demonstrated a predominant temporal lobe involvement and semantic dementia phenotype in a high percentage of FTD patients with this mutation [12]. Mutations in TDP-43 and in the fused in sarcoma genes (FUS) [13], both RNA-binding proteins and sharing functional homologies, have highlighted the importance of RNA processing in ALS pathogenesis [14, 15]. Recently, mutations in Matrin 3 (MATR3), an RNA- and DNA-binding protein that interacts with TDP-43 and earlier described as a cause of distal myopathy [16], have been identified as a cause of FALS [17], providing further evidence of the role of aberrant RNA processing in motor neuron degeneration.

Discovered in 2011 [18, 19], the C9orf72 repeat expansion represents not only the most common genetic cause of FALS of European descent (more than one-third), but also accounts for a significant percentage of apparently sporadic ALS cases (~7 %). Moreover, C9orf72 repeat expansions account for many familial FTD cases (~25 %) and genetically explains the overlap between these two clinical syndromes [6, 20]. Although the most frequent phenotypes are ALS, the behavioral variant FTD (bvFTD) or ALS/FTD the presentations associated with C9orf72 repeat expansion may be extremely heterogeneous, in regard to disease progression rate, neuropsychiatric, behavioural and motor features [21]. The potential role of C9orf72 repeat expansions in other neurodegenerative disorders, such as Parkinson Disease (PD) or atypical parkinsonism is still to be elucidated [22]. A recent study revealed intermediate 20–30 repeat expansions in 4.3 % of patients presenting with non-classical atypical parkinsonism with FTD-like dementia or without dementia and with an upper MND-like phenotype [23], suggesting a potential pathogenetic role for intermediate repeat sizes, in line with some earlier reports [24, 25, 26]. C9orf72 repeat expansions have also been suggested by recent studies as a possible genetic cause of Huntington disease phenocopy syndrome, further expanding its potential spectrum of presentation [27, 28, 29].

Although the mechanism leading to neurodegeneration in C9orf72 expansions is not fully understood [21], potential mechanisms include loss of C9orf72 protein and function, RNA toxicity and sequestration of RNA-binding proteins [30], or alternatively toxicity from the dipeptide repeat (DPR) proteins, which are the pathologic hallmark of C9orf72 expansion-related neuronal inclusions [31].

Importantly, the identification of C9orf72-related ALS has encouraged scientists to search for other repeat-expansions. While ATXN-2 (SCA2) and ATXN-1 (SCA1) PolyQ intermediate expansions have been previously reported to be independently associated with an increased risk for ALS [32, 33, 34], co-occurrence of ALS and SCA1 within a family carrying an intermediate ATXN-1 poly-Q expansion has been recently reported, reinforcing the putative pathogenic link between the two disorders [35].

Further evidence of association between MND and FTD has been more recently provided by the demonstration that loss of function (LoF) mutations of the TBK1 gene, encoding the TANK-binding kinase 1, causes a dominant form of ALS and FTD which could potentially account for up to 4 % of FALS cases [36, 37]. Mutations would result in an impaired TBK1 interaction with optineurin and sequestosome-1 (also known as ubiquitin-binding protein p62), both implicated in ALS pathogenesis [38, 39]. All these genes are involved in one common pathway of autophagy regulation [36, 37].

An even broader range of clinical presentations has been recently related to mutations in the coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) gene, encompassing not only ALS without cognitive impairment, ALS/FTD or FTD (~1 % of cases), but also parkinsonism, cerebellar ataxia and mitochondrial myopathy [40, 41, 42, 43]. These findings support the hypothesis that mitochondrial dysfunction may be implicated in the pathogenesis of ALS and several other neurodegenerative disorders [44].

Recently, identification of putative mutations in the profilin 1 (PFN1) [45] and TUBA4A [46] genes has indicated that defects in neuronal cytoskeleton architecture may also contribute to MND pathogenesis.

PFN1 mutations were initially identified using an exome-sequencing approach in 2.6 % of FALS cases [45]. A mutational analysis of the PFN1 gene was carried out in a Catalan cohort of 42 FALS and 423 SALS patients [47]. No PFN1 mutations were identified. This is consistent with other negative studies in other populations [48, 49, 50, 51], suggesting that PFN1 is not a major ALS-causing gene.

An excess of patient variants (7/635) in TUBA4A gene was first identified by an exome-wide burden analysis study of rare variants in FALS index cases [46]. A second study identified four novel TUBA4A variants with predicted deleterious effects in a cohort of 1106 SALS of Italian origin, supporting the role of TUBA4A gene in ALS [52]. However, further confirmative and functional studies are needed before any individual TUBA4A variant can be implicated in ALS [53].

During the last few years, several genome-wide association studies (GWAS) have been used not only in order to identify new risk loci but also to discover genetic variants that may influence ALS phenotype, for example age at onset or prognosis. Although most of these associations still need replication [7], a recent study confirmed that the UNC13A rs12608932 is not only a risk factor for ALS in the Spanish population, but would also appear to be a modifying factor for survival and disease progression rate [54]. This is consistent with previous reports [55, 56, 57, 58].

Environmental factors

Various environmental factors have been proposed to be associated with ALS, such as smoking, antioxidant intake, body mass index, physical exercise, head trauma, metabolic and inflammatory states, cancer, and occupational or environmental exposures to electromagnetic fields, metals or pesticides [59]. However, the only established risk factors to date are older age, male gender, and a family history of ALS [60].

Potential associations between medical conditions and ALS was explored by a recent population-based case–control study performed in the Netherlands, including 722 sporadic ALS patients [61].

A significant association between head trauma and ALS susceptibility (OR 1.95, 95 % CI 1.11–3.43, p = 0.02), was found, in line with previous reports [62, 63, 64, 65]. In contrast, hypercholesterolemia (OR 0.76, 95 % CI 0.63–0.92, p = 0.006) and the use of statins (OR 0.45, 95 % CI 0.35–0.59, p = 1.86 × 10−9) were instead associated with a decreased risk of ALS, in line with previous reports but in contrast with other studies, that reported either higher [66] or unaltered [67] lipid levels in ALS patients compared to controls. Moreover, the use of immunosuppressive drugs were associated with a decreased risk of ALS (OR 0.26, 95 % CI 0.08–0.86, p = 0.03), in contrast with two previous hospital-based reports [68, 69].

One of the key clinical and pathological observations is that ALS onset is focal and discrete, subsequently followed by progressive spread of the neurodegenerative process [70].

While the split hand syndrome is a recognized distinctive clinical and neurophysiological phenomenon in ALS [71], defined by dissociated wasting of the hypothenar and thenar muscles, a recent study has also demonstrated dissociated involvement of lower limb ankle muscles. These observations suggest underlying selective differences in susceptibility to degeneration or disequilibrium of excitatory inputs within motor neuronal subsets [72].

A potential link between exogenous factors and focality at onset has been suggested by a recent retrospective observational study, identifying18 out of 1835 subjects who developed MND after frontal contusions or other frontal intracranial lesions; interestingly, symptom onset started in a body region reflecting the damaged cortical area in the vast majority (15/18) of the patients [73]. Moreover, ALS has recently been linked to previous embolization of a subgroup of cerebral arteriovenous malformations (AVM) with perinidal angiogenesis, suggesting a link between altered angiogenesis and low VEGF production and ALS development [74].

ALS phenotype heterogeneity

The ALS clinical spectrum includes extremely heterogeneous and complex phenotypes marked by a varying involvement of upper and lower motor neurons, site of onset and rate of progression [70]. Recognized MND phenotypes include classic, bulbar, flail arm, flail leg, pyramidal and respiratory ALS, primary lateral sclerosis (PLS), characterized predominantly by pure/predominant UMN degeneration and progressive muscular atrophy (PMA), characterized by pure/predominant LMN degeneration [75]. The motor phenotype is so heterogeneous that it may overlap with other diseases of the MND spectrum, such as hereditary spastic paraplegia or distal motor neuropathy (dSMA). Noteworthy, recent studies have demonstrated that causative genes identified so far are not uniquely associated with a single clinical form but may be responsible for different phenotypes within the MND spectrum, ranging from predominant lower to upper motor neuron involvement. For instance, recent reports have highlighted how such genes as DCTN1 (dynactin 1) [76, 77, 78], GDAP1 (ganglioside-induced differentiation associated protein 1) [76, 79, 80], DYNC1H1 (Dynein, cytoplasmic 1, heavy chain 1) [81, 82], KIF5A (Kinesin Heavy Chain Isoform 5A) [81, 83], NEFH (neurofilament heavy chain gene) [84, 85] have all been associated with a wide range of phenotypes, ranging from ALS to hereditary spastic paraparesis (HSP) [86], dSMA or even classic Charcot–Marie–Tooth disease [76, 81, 82].

Besides “pure” motor symptoms, a varied degree of extra-motor involvement may be observed in MND patients. Following early clinical descriptions, the identification of TDP43-positive ubiquitinated cytoplasmic inclusions in almost all ALS cases and more than half of FTD patients [87], has rekindled interest in the overlap between these neurodegenerative syndromes [1]. This is further supported by neuroradiological studies [88] and recent advances in ALS and FTD genetics, as described above. While cognitive abnormalities characterized by executive and behavioral abnormalities, language and memory impairment, may be detected in up to 50 % of ALS patients [89, 90], at the extreme end of the spectrum, overt FTD may be diagnosed in up to 15 % of ALS patients [91, 92]. In line with this, a recent study performed in 126 Chinese SALS patients found that 46.0 % of subjects showed varyingi degrees of frontal behavioral changes based on the frontal behavioral inventory (FBI) score, while the prevalence of frontal lobe impairment, assessed with the frontal assessment battery (FAB), was as high as 32.5 %, with “lexical fluency deficit” being the highest affected domain (30.7 %) [93]. Impaired language, and more specifically significant difficulty with action verb associativity judgments in ALS has also been confirmed by a more recent study [94]. Executive dysfunction may also predict social cognition impairment, which refers to the capability of encoding and decoding socially salient information, such as the emotions and intentions of others [95]. Since these processes are considered to be supported by a frontostriatal network, these data further support a cognitive continuum between ALS and FTD [96, 97]. Importantly, it has also been recently shown that cognitive and behavioural status is a major predictor of caregiver burden [98].

Besides cognitive impairment, concomitant sensory nervous system involvement has also been previously independently reported in ALS [99]. Interestingly, a recent report has suggested that patients with spinal-onset but not those with bulbar-onset ALS have a concomitant distal small-fibre neuropathy [100]. This finding is in keeping with previous reports [101] and may also be viewed in light of the recently proposed focal-spreading model of neurodegeneration in ALS [102, 103].

Prognosis

ALS phenotypic heterogeneity is reflected in the variability of ALS prognosis: although approx. one half of patients die within 30 months of symptom onset, ~20 % of patients survive between 5 and 10 years [104]. The identification of the key prognostic factors is therefore important for appropriate timing of medical interventions and stratification in clinical trials.

Notably, a simple prognostic algorithm was recently proposed. Employing a multivariate model, the negative prognostic indicators included in the model were: bulbar and respiratory site of disease onset, executive dysfunction, and ALSFRS-R slope prior to first evaluation [105]. These results are in keeping with previous reports [104, 106, 107, 108, 109, 110], but unlike in these previous studies, older age of onset and female gender were not confirmed as predictors of poor prognosis [111, 112].

The prognostic factors for the rate of functional decline of patients with ALS, as assessed with the revised ALS Functional Rating Scale (ALSFRS-R), were recently systematically reviewed [113]. The quality of evidence for the prognostic value of age at onset, site of onset, time from symptom onset to diagnosis, and ALSFRS-R baseline score was graded as “low”, moreover, the prognostic value of initial rate of disease progression, age at diagnosis, forced vital capacity (FVC), presence of FTD, body mass index (BMI), was graded as ‘very low’, mainly due to the limited numbers and the methodological quality of the selected studies. However, most of the prognostic factors for survival previously described also have prognostic value for functional decline, strengthening the relevance of the identified factor [104].

Although it has previously been shown that higher BMI values may slow ALS disease progression, faster decline in ALSFRS-R scores has been reported for patients with a BMI > 30 [114, 115, 116, 117]. Since cognitive deficits are considered a negative prognostic factor for ALS, [109, 110] the finding of higher BMI values in ALS-FTD patients may provide a potential explanation for this apparent paradox [118].

Markers related to oxidative stress have also been recently implicated as prognostic factors in ALS: a recent study showed that patients with a lower activity of NADPH oxidase 2 (NOX2), the main reactive oxygen species-producing enzyme, may have a significant increase in survival, [119] while a recent meta-analysis has demonstrated lower levels of uric acid, one of the most important antioxidants in the blood, in ALS patients compared to controls [120].

Potential associations between co-medications and survival in ALS have also been recently explored: the use of proton pump inhibitors has been negatively correlated with survival (HR 1.34, 95 % CI 1.04–1.73), while centrally acting muscle relaxants showed a positive association (HR 0.56, 95 % CI 0.39–0.81) [121], the latter remaining significant after multiple testing correction and potentially explained by an indication bias representing the better prognosis of the upper motor neuron predominant disease variant [122, 123].

Diagnostic challenges

The diagnosis of ALS is clinical and has been categorized by the El Escorial criteria into various levels of certainty depending on the presence and progressive spread of UMN and LMN signs [124]. Clinical examination, including the careful search for signs of UMN and LMN involvement [125], therefore remains the cornerstone of ALS diagnosis. Moreover, it has recently been suggested that the evaluation of primitive reflexes may also be useful as a simple screening tool for cognitive impairment in ALS [126]. Needle examination, may be extremely useful for the identification of LMN loss and has been incorporated into the revised El Escorial criteria [124]. Although ALS diagnosis is generally fairly simple [127], the false positive rate has been estimated to be as high as eight to 10 %; [128], while the false-negative rate approaches 45 % [129, 130]. Several disorders, often referred to as ALS mimic syndromes, may primarily affect the motor system, simulating ALS. These include Sandhoff disease, adult polyglucosan body disease and Hirayama disease, as highlighted by recent reports [131, 132, 133]. In selected cases motor nerve biopsy may be useful for an early differential diagnosis of patients presenting with atypical LMN syndrome [134, 135]. Most importantly, differentiation between MND, in particular progressive muscular atrophy (PMA), and multifocal motor neuropathy (MMN) may be extremely challenging. Although MMN has distinctive neurophysiological features and is often associated with anti-GM1 antibodies [136, 137], a recent large case–control study showed that both PMA and MMN, but not ALS and PLS, are associated with IgM monoclonal gammopathy (8 and 7 %, respectively), suggesting that a subset of patients presenting with PMA share pathogenic mechanisms with MMN [138]. Within this context, nerve ultrasound may provide an additional diagnostic tool, since the ultrasonic finding of focal or multifocal nerve enlargement may strengthen the diagnosis of MMN since is generally not found in ALS [139].

Advances in neuroimaging

The past few years have seen improvements in anatomical and functional neuroimaging techniques, opening up exciting opportunities to investigate new aspects of the central nervous system structure and function in ALS patients [140]. Efforts are currently directed to phenotypic characterization, identification of brain changes related to clinical outcomes and assessment of their prognostic value.

There are increasing reports of different patterns of grey (GM) and white matter (WM) loss in specific groups of ALS patients [141]. Recent investigations confirm a role for corticospinal tract (CST) metrics in discriminating aggressive forms of ALS from more slowly progressing cases [142, 143, 144]. Greater changes along the CST has been observed in bulbar-onset ALS patients compared to limb-onset ones [142]. Patients with faster clinical progression showed more severe cortical thinning of the left precentral gyrus and fractional anisotropy reduction of the CST relative to those with slower rate of progression [143]. A recent study employed Q-ball imaging (QBI), a new diffusion imaging technique which enables a better estimation of intersecting tracts damage than traditional diffusion tensor (DT) MRI, to investigate the extent of WM involvement in ALS [144]. ALS patients showed decreased fiber density and volume, and increased tract length in the corpus callosum and CST relative to healthy controls [144]. In addition, damage to callosal fibers was strongly related to pyramidal impairment and clinical disability. All these findings suggest that an advanced MRI approach has the potential to improve our understanding of neural substrates of clinical impairment in the disease.

Few MRI longitudinal studies have been published on ALS, and the true potential of MRI as a marker for monitoring disease progression has yet to be defined [140]. Longitudinal analyses of small numbers of ALS patients have shown a decrease of cortical thickness in motor, temporal, and fronto-parietal cortices, as well as DT MRI changes in the CST, corpus callosum and frontal regions [141]. A recent study investigating cortical thickness changes over time in different ALS phenotypes found a significant decline of cortical thickness in frontal, temporal, and parietal regions over time [145]. Effects were independent of the clinical subtype, with exception of the precentral gyrus: the LMN ALS variants demonstrated the highest rates of cortical thinning in the precentral gyrus, the UMN-dominant subjects exhibited intermediate rates of atrophy, and the classical ALS patients exhibited no such change. Atrophy of the precentral gyrus in classical ALS indicates a floor effect at the first assessment, resulting in a lack of further atrophy over time [145]. These findings indicate that, while a severe precentral cortical loss is an early sign of classical ALS, atrophy spreads to extra-motor regions over time independently of the phenotypic presentation [145]. Future studies should investigate whether a thinning of the precentral gyrus in LMN ALS variants precedes the transition to classical ALS. A probabilistic fiber tractography study estimated structural connectivity changes after 3 months in patients with ALS [146]. While CST damage did not worsen over time, DT MRI changes were observed in the occipito-temporal tract (linking visual and entorhinal, perirhinal or parahippocampal cortices) [146]. These findings suggest that motor network degeneration starts early (even pre-clinically) in the course of ALS, while extra-motor damage is likely to contribute to the progression of the disease [146].

Clinical management

Riluzole, an inhibitor of glutamate release has been established as the only and modestly effective disease modifying (neuroprotective) therapy for ALS, extending mean patient survival by 3–6 months [147, 148, 149]. Therefore, in the absence of a cure, the cornerstones of the management of patients with ALS are focused on symptom control. These treatments may not only alleviate symptoms but also maintain quality of life and improve survival, with greater benefit for patients managed in specialized, multidisciplinary ALS clinics [150, 151, 152, 153, 154, 155]. Symptomatic care in ALS includes a wide range of patient-tailored interventions addressing pain, emotional lability, anxiety and depression, sleep disturbances, constipation and including physiotherapy and adaptive aids. Prevalence of muscle cramps has been estimated to be as high as 44–55 % in ALS patients. As recently reviewed, therapeutic options include quinine sulfate, tetrahydrocannabinol, vitamin B-complex, diltiazem, natridrofuryl oxalate, mexiletine, carbamazepine and leveteracitam as well as non prescription approaches such as muscle stretching [156]. Interestingly, a small case series recently demonstrated that radiotherapy treatment of sialorrhea, which affects up to 25 % of patients [157], may be feasible, efficient and safe, even in patients requiring non-invasive ventilation [158].

Dysphagia and respiratory failure, which is the main cause of mortality for ALS patient, represent two crucial areas of symptomatic interventions for ALS patients.

Given that malnutrition is a negative prognostic factor [159] and aspiration pneumonia one of most feared causes of morbidity and mortality in ALS, current practice guidelines recommend gastrostomy feeding for patients with severe dysphagia [152]. Importantly, a new scale for dysphagia in patients with progressive neuromuscular diseases, including MND, has recently been developed, potentially helping with a more precise evaluation and selection of ALS patients [160]. The two main methods of gastrostomy insertion are percutaneous endoscopic gastrostomy (PEG) and radiologically inserted gastrostomy (RIG), even when per-oral image-guided gastrostomy may also be possible. Even though it has been suggested that RIG may be safer than PEG, in particular in patients with respiratory failure [161, 162], there is to date little evidence to indicate which is the best method and what is the optimum timing for the procedure. Indeed, a recent prospective observational study showed that PEG was a safe procedure even in patients with low forced vital capacity (FVC) [163]. These results were further confirmed by another large prospective cohort study showing that the three methods seemed to be equally safe in relation to survival and procedural complications [164]. However, both studies agree that PEG might be less beneficial when delayed. Further studies, and preferably randomized controlled trials are needed in order to gain better evidences for the nutritional management and gastrostomy in ALS patients.

Respiratory failure is not only the main mortality cause, but may also be the presenting symptom in patients with ALS, in this instance requiring careful differential diagnosis to exclude other neuromuscular and non-neuromuscular disorders [165]. Recommended pulmonary tests are spirometry (including Supine FVC), polysomnography, arterial gas analysis and sniff nasal inspiratory pressure (SNIP), which has recently been shown to be a potential prognostic factor for tracheostomy or death from the early phase of disease [166]. While a recent open-label, randomized controlled trial has shown that addition of diaphragm pacing to standard care was associated with decreased survival in patients with ALS [167], non-invasive ventilation (NIV) has been shown to improve quality of life and survival in patients with ALS [168]. In patients with substantial bulbar impairment efficacy of NIV may be more limited; however, a recent study has demonstrated objective sleep and nocturnal respiratory outcomes in both non-bulbar and bulbar patients [169]. Moreover, NIV has also been reported to significantly increase survival by 19 months in patients with ALS-bulbar onset [170]. In more advanced states, invasive ventilation via tracheostomy is an option for prolongment of survival [171].

Ethical issues in motor neuron disease

Being a relentlessly fatal disease with no curative therapy currently available, there are many ethical issues in ALS care, from the diagnosis to the latest stages of disease, as recently reviewed [172]. End-of-life discussions, including gastrostomy, NIV and invasive mechanical ventilation are often delayed, potentially leading to unplanned crisis interventions [173]. Although there is no consensus on timing, it is suggested that options for respiratory support and end-of-life issues be discussed if the patient displays symptoms of hypoventilation [174]. Despite the fact that many health-care providers and physicians may find it difficult and stressful [175, 176], ALS patients generally welcome the opportunity to discuss end-of-life issues with their physician [177, 178]. A recent study demonstrated that caregivers and the general public significantly underestimate the QoL of ALS patients and over estimate the patients’ rate of depression. Moreover, the desire to shorten life was significantly lower in ALS patients compared to what healthy subjects thought the patient would wish, emphasizing the need for unbiased patient perspectives in order to secure patient-centred decision making, even if the potential executive and behavioural impairments raises further inevitable questions [179]. A low desire to hasten death and a positive attitude towards life-sustaining treatments were confirmed by another recent study. Of those with an undecided or negative attitude, 10 % changed their attitudes towards life-sustaining treatments during the following year. The same study reported that QoL, depression and social support were not predictors of vital decisions, while the feeling of being a burden was a predictor of decisions against life-supporting treatments [180]. No association between depressive symptoms and euthanasia or physician-assisted suicide (EAS) was reported by a recent prospective study performed in the Netherlands, where EAS has been estimated to be as high as 20 % [181]. Patients’ perspectives concerning PEG and NIV were recently evaluated, showing that the decision-making process is complex, unpredictable and individual, comprising patient-centric factors and external factors, including the roles played by healthcare professionals, family information provided and concepts of timing of interventions [182].

Notably, the recent awareness of potential executive and behavioural impairments in ALS patients represents a further ethical open question, emphasizing the need to develop new methods of neuropsychological assessment suitable to the more advanced stages of disease [179, 183].

Conclusions

ALS remains a relentlessly progressive and fatal disease and the only approved disease-modifying drug has a modest effect in slowing disease progression. Symptomatic and palliative care, provided in a multidisciplinarycontext, still remains the cornstone of ALS management [148]. However, significant progress has been accomplished in the identification of new genetic factors underlying this disease. Although currently known ALS-related genes still explain a minority of cases, they have helped to unravel the molecular mechanisms of motorneuron degeneration and to identify converging pathways underlying ALS pathogenesis, such as disturbed RNA metabolism or pathological protein aggregation, giving new hope for the development of novel diagnostic and therapeutic approaches.

Notes

Acknowledgments

AriSLA, Italian Research Foundation for ALS (Ex Alta) to A.Q. This study was partially supported by a grant from the Italian Ministry of Health (#RF-2010-2313220) to M.F.

Compliance with ethical standards

Conflicts of interest

None.

References

  1. 1.
    Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377(9769):942–955. doi: 10.1016/S0140-6736(10)61156-7 PubMedCrossRefGoogle Scholar
  2. 2.
    Turner MR, Hardiman O, Benatar M, Brooks BR, Chio A, de Carvalho M, Ince PG, Lin C, Miller RG, Mitsumoto H, Nicholson G, Ravits J, Shaw PJ, Swash M, Talbot K, Traynor BJ, Van den Berg LH, Veldink JH, Vucic S, Kiernan MC (2013) Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 12(3):310–322. doi: 10.1016/S1474-4422(13)70036-X PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Vucic S, Rothstein JD, Kiernan MC (2014) Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends Neurosci 37(8):433–442. doi: 10.1016/j.tins.2014.05.006 PubMedCrossRefGoogle Scholar
  4. 4.
    Al-Chalabi A, Hardiman O (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol 9(11):617–628. doi: 10.1038/nrneurol.2013.203 PubMedCrossRefGoogle Scholar
  5. 5.
    Armon C (2003) An evidence-based medicine approach to the evaluation of the role of exogenous risk factors in sporadic amyotrophic lateral sclerosis. Neuroepidemiology 22(4):217–228. doi: 10.1159/000070562 PubMedCrossRefGoogle Scholar
  6. 6.
    Renton AE, Chio A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17(1):17–23. doi: 10.1038/nn.3584 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Marangi G, Traynor BJ (2015) Genetic causes of amyotrophic lateral sclerosis: new genetic analysis methodologies entailing new opportunities and challenges. Brain Res 1607:75–93. doi: 10.1016/j.brainres.2014.10.009 PubMedCrossRefGoogle Scholar
  8. 8.
    Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62. doi: 10.1038/362059a0 PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Iguchi Y, Katsuno M, Ikenaka K, Ishigaki S, Sobue G (2013) Amyotrophic lateral sclerosis: an update on recent genetic insights. J Neurol 260(11):2917–2927. doi: 10.1007/s00415-013-7112-y PubMedCrossRefGoogle Scholar
  10. 10.
    Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E, Baralle F, de Belleroche J, Mitchell JD, Leigh PN, Al-Chalabi A, Miller CC, Nicholson G, Shaw CE (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319(5870):1668–1672. doi: 10.1126/science.1154584 PubMedCrossRefGoogle Scholar
  11. 11.
    Chen Y, Li S, Su L, Sheng J, Lv W, Chen G, Xu Z (2015) Association of progranulin polymorphism rs5848 with neurodegenerative diseases: a meta-analysis. J Neurol 262(4):814–822. doi: 10.1007/s00415-014-7630-2 PubMedCrossRefGoogle Scholar
  12. 12.
    Floris G, Borghero G, Cannas A, Di Stefano F, Murru MR, Corongiu D, Cuccu S, Tranquilli S, Cherchi MV, Serra A, Loi G, Marrosu MG, Chio A, Marrosu F (2015) Clinical phenotypes and radiological findings in frontotemporal dementia related to TARDBP mutations. J Neurol 262(2):375–384. doi: 10.1007/s00415-014-7575-5 PubMedCrossRefGoogle Scholar
  13. 13.
    Tarlarini C, Lunetta C, Mosca L, Avemaria F, Riva N, Mantero V, Maestri E, Quattrini A, Corbo M, Melazzini MG, Penco S (2015) Novel FUS mutations identified through molecular screening in a large cohort of familial and sporadic amyotrophic lateral sclerosis. Eur J Neurol. doi: 10.1111/ene.12772 PubMedCrossRefGoogle Scholar
  14. 14.
    Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, de Jong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, McKenna-Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH Jr (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323(5918):1205–1208. doi: 10.1126/science.1166066 PubMedCrossRefGoogle Scholar
  15. 15.
    Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, Ganesalingam J, Williams KL, Tripathi V, Al-Saraj S, Al-Chalabi A, Leigh PN, Blair IP, Nicholson G, de Belleroche J, Gallo JM, Miller CC, Shaw CE (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323(5918):1208–1211. doi: 10.1126/science.1165942 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Senderek J, Garvey SM, Krieger M, Guergueltcheva V, Urtizberea A, Roos A, Elbracht M, Stendel C, Tournev I, Mihailova V, Feit H, Tramonte J, Hedera P, Crooks K, Bergmann C, Rudnik-Schoneborn S, Zerres K, Lochmuller H, Seboun E, Weis J, Beckmann JS, Hauser MA, Jackson CE (2009) Autosomal-dominant distal myopathy associated with a recurrent missense mutation in the gene encoding the nuclear matrix protein, matrin 3. Am J Hum Genet 84(4):511–518. doi: 10.1016/j.ajhg.2009.03.006 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Johnson JO, Pioro EP, Boehringer A, Chia R, Feit H, Renton AE, Pliner HA, Abramzon Y, Marangi G, Winborn BJ, Gibbs JR, Nalls MA, Morgan S, Shoai M, Hardy J, Pittman A, Orrell RW, Malaspina A, Sidle KC, Fratta P, Harms MB, Baloh RH, Pestronk A, Weihl CC, Rogaeva E, Zinman L, Drory VE, Borghero G, Mora G, Calvo A, Rothstein JD, Consortium I, Drepper C, Sendtner M, Singleton AB, Taylor JP, Cookson MR, Restagno G, Sabatelli M, Bowser R, Chio A, Traynor BJ (2014) Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosci 17(5):664–666. doi: 10.1038/nn.3688 CrossRefGoogle Scholar
  18. 18.
    Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita VM, Kaivorinne AL, Holtta-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chio A, Restagno G, Borghero G, Sabatelli M, Consortium I, Heckerman D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2):257–268. doi: 10.1016/j.neuron.2011.09.010 CrossRefGoogle Scholar
  19. 19.
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2):245–256. doi: 10.1016/j.neuron.2011.09.011 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S, Chio A, Restagno G, Nicolaou N, Simon-Sanchez J, van Swieten JC, Abramzon Y, Johnson JO, Sendtner M, Pamphlett R, Orrell RW, Mead S, Sidle KC, Houlden H, Rohrer JD, Morrison KE, Pall H, Talbot K, Ansorge O, Chromosome ALSFTDC, French research network on FFA, Consortium I, Hernandez DG, Arepalli S, Sabatelli M, Mora G, Corbo M, Giannini F, Calvo A, Englund E, Borghero G, Floris GL, Remes AM, Laaksovirta H, McCluskey L, Trojanowski JQ, Van Deerlin VM, Schellenberg GD, Nalls MA, Drory VE, Lu CS, Yeh TH, Ishiura H, Takahashi Y, Tsuji S, Le Ber I, Brice A, Drepper C, Williams N, Kirby J, Shaw P, Hardy J, Tienari PJ, Heutink P, Morris HR, Pickering-Brown S, Traynor BJ (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11(4):323–330. doi: 10.1016/S1474-4422(12)70043-1 CrossRefGoogle Scholar
  21. 21.
    Rohrer JD, Isaacs AM, Mizielinska S, Mead S, Lashley T, Wray S, Sidle K, Fratta P, Orrell RW, Hardy J, Holton J, Revesz T, Rossor MN, Warren JD (2015) C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Lancet Neurol 14(3):291–301. doi: 10.1016/S1474-4422(14)70233-9 PubMedCrossRefGoogle Scholar
  22. 22.
    Schottlaender LV, Polke JM, Ling H, MacDoanld ND, Tucci A, Nanji T, Pittman A, de Silva R, Holton JL, Revesz T, Sweeney MG, Singleton AB, Lees AJ, Bhatia KP, Houlden H (2015) The analysis of C9orf72 repeat expansions in a large series of clinically and pathologically diagnosed cases with atypical parkinsonism. Neurobiol Aging 36(2):1221, e1221–e1226. doi: 10.1016/j.neurobiolaging.2014.08.024
  23. 23.
    Cannas A, Solla P, Borghero G, Floris GL, Chio A, Mascia MM, Modugno N, Muroni A, Orofino G, Di Stefano F, Calvo A, Moglia C, Restagno G, Meloni M, Farris R, Ciaccio D, Puddu R, Vacca MI, Melis R, Murru MR, Tranquilli S, Corongiu D, Rolesu M, Cuccu S, Marrosu MG, Marrosu F (2015) C9ORF72 intermediate repeat expansion in patients affected by atypical parkinsonian syndromes or Parkinson’s disease complicated by psychosis or dementia in a Sardinian population. J Neurol. doi: 10.1007/s00415-015-7873-6 CrossRefPubMedGoogle Scholar
  24. 24.
    Daoud H, Noreau A, Rochefort D, Paquin-Lanthier G, Gauthier MT, Provencher P, Pourcher E, Dupre N, Chouinard S, Jodoin N, Soland V, Fon EA, Dion PA, Rouleau GA (2013) Investigation of C9orf72 repeat expansions in Parkinson’s disease. Neurobiol Aging 34(6):1710, e1717–e1719. doi: 10.1016/j.neurobiolaging.2012.11.025
  25. 25.
    Nuytemans K, Bademci G, Kohli MM, Beecham GW, Wang L, Young JI, Nahab F, Martin ER, Gilbert JR, Benatar M, Haines JL, Scott WK, Zuchner S, Pericak-Vance MA, Vance JM (2013) C9ORF72 intermediate repeat copies are a significant risk factor for Parkinson disease. Ann Hum Genet 77(5):351–363. doi: 10.1111/ahg.12033 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Yeh TH, Lai SC, Weng YH, Kuo HC, Wu-Chou YH, Huang CL, Chen RS, Chang HC, Traynor B, Lu CS (2013) Screening for C9orf72 repeat expansions in parkinsonian syndromes. Neurobiol Aging 34(4):1311, e1313–e1314. doi: 10.1016/j.neurobiolaging.2012.09.002
  27. 27.
    Kostic VS, Dobricic V, Stankovic I, Ralic V, Stefanova E (2014) C9orf72 expansion as a possible genetic cause of Huntington disease phenocopy syndrome. J Neurol 261(10):1917–1921. doi: 10.1007/s00415-014-7430-8 PubMedCrossRefGoogle Scholar
  28. 28.
    Hensman Moss DJ, Poulter M, Beck J, Hehir J, Polke JM, Campbell T, Adamson G, Mudanohwo E, McColgan P, Haworth A, Wild EJ, Sweeney MG, Houlden H, Mead S, Tabrizi SJ (2014) C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology 82(4):292–299. doi: 10.1212/WNL.0000000000000061 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Koutsis G, Karadima G, Kartanou C, Kladi A, Panas M (2015) C9ORF72 hexanucleotide repeat expansions are a frequent cause of Huntington disease phenocopies in the Greek population. Neurobiology of aging 36(1):547, e513–e546. doi: 10.1016/j.neurobiolaging.2014.08.020
  30. 30.
    Gendron TF, Belzil VV, Zhang YJ, Petrucelli L (2014) Mechanisms of toxicity in C9FTLD/ALS. Acta Neuropathol 127(3):359–376. doi: 10.1007/s00401-013-1237-z PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E, Schmid B, Kretzschmar HA, Cruts M, Van Broeckhoven C, Haass C, Edbauer D (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339(6125):1335–1338. doi: 10.1126/science.1232927 PubMedCrossRefGoogle Scholar
  32. 32.
    Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, Armakola M, Geser F, Greene R, Lu MM, Padmanabhan A, Clay-Falcone D, McCluskey L, Elman L, Juhr D, Gruber PJ, Rub U, Auburger G, Trojanowski JQ, Lee VM, Van Deerlin VM, Bonini NM, Gitler AD (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466(7310):1069–1075. doi: 10.1038/nature09320 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Conforti FL, Spataro R, Sproviero W, Mazzei R, Cavalcanti F, Condino F, Simone IL, Logroscino G, Patitucci A, Magariello A, Muglia M, Rodolico C, Valentino P, Bono F, Colletti T, Monsurro MR, Gambardella A, La Bella V (2012) Ataxin-1 and ataxin-2 intermediate-length PolyQ expansions in amyotrophic lateral sclerosis. Neurology 79(24):2315–2320. doi: 10.1212/WNL.0b013e318278b618 PubMedCrossRefGoogle Scholar
  34. 34.
    Lee T, Li YR, Chesi A, Hart MP, Ramos D, Jethava N, Hosangadi D, Epstein J, Hodges B, Bonini NM, Gitler AD (2011) Evaluating the prevalence of polyglutamine repeat expansions in amyotrophic lateral sclerosis. Neurology 76(24):2062–2065. doi: 10.1212/WNL.0b013e31821f4447 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Spataro R, La Bella V (2014) A case of amyotrophic lateral sclerosis with intermediate ATXN-1 CAG repeat expansion in a large family with spinocerebellar ataxia type 1. J Neurol 261(7):1442–1443. doi: 10.1007/s00415-014-7400-1 PubMedCrossRefGoogle Scholar
  36. 36.
    Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Muller K, Marroquin N, Nordin F, Hubers A, Weydt P, Pinto S, Press R, Millecamps S, Molko N, Bernard E, Desnuelle C, Soriani MH, Dorst J, Graf E, Nordstrom U, Feiler MS, Putz S, Boeckers TM, Meyer T, Winkler AS, Winkelman J, de Carvalho M, Thal DR, Otto M, Brannstrom T, Volk AE, Kursula P, Danzer KM, Lichtner P, Dikic I, Meitinger T, Ludolph AC, Strom TM, Andersen PM, Weishaupt JH (2015) Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci 18(5):631–636. doi: 10.1038/nn.4000 PubMedCrossRefGoogle Scholar
  37. 37.
    Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M, Perkersen R, Brown P, Ravenscroft T, van Blitterswijk M, Nicholson AM, DeTure M, Knopman DS, Josephs KA, Parisi JE, Petersen RC, Boylan KB, Boeve BF, Graff-Radford NR, Veltman JA, Gilissen C, Murray ME, Dickson DW, Rademakers R (2015) Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol 130(1):77–92. doi: 10.1007/s00401-015-1436-x PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fecto F, Yan J, Vemula SP, Liu E, Yang Y, Chen W, Zheng JG, Shi Y, Siddique N, Arrat H, Donkervoort S, Ajroud-Driss S, Sufit RL, Heller SL, Deng HX, Siddique T (2011) SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 68(11):1440–1446. doi: 10.1001/archneurol.2011.250 PubMedCrossRefGoogle Scholar
  39. 39.
    Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, Kinoshita Y, Kamada M, Nodera H, Suzuki H, Komure O, Matsuura S, Kobatake K, Morimoto N, Abe K, Suzuki N, Aoki M, Kawata A, Hirai T, Kato T, Ogasawara K, Hirano A, Takumi T, Kusaka H, Hagiwara K, Kaji R, Kawakami H (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465(7295):223–226. doi: 10.1038/nature08971 PubMedCrossRefGoogle Scholar
  40. 40.
    Bannwarth S, Ait-El-Mkadem S, Chaussenot A, Genin EC, Lacas-Gervais S, Fragaki K, Berg-Alonso L, Kageyama Y, Serre V, Moore DG, Verschueren A, Rouzier C, Le Ber I, Auge G, Cochaud C, Lespinasse F, N’Guyen K, de Septenville A, Brice A, Yu-Wai-Man P, Sesaki H, Pouget J, Paquis-Flucklinger V (2014) A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137(Pt 8):2329–2345. doi: 10.1093/brain/awu138 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Dols-Icardo O, Nebot I, Gorostidi A, Ortega-Cubero S, Hernandez I, Rojas-Garcia R, Garcia-Redondo A, Povedano M, Llado A, Alvarez V, Sanchez-Juan P, Pardo J, Jerico I, Vazquez-Costa J, Sevilla T, Cardona F, Indakoechea B, Moreno F, Fernandez-Torron R, Munoz-Llahuna L, Moreno-Grau S, Rosende-Roca M, Vela A, Munoz-Blanco JL, Combarros O, Coto E, Alcolea D, Fortea J, Lleo A, Sanchez-Valle R, Esteban-Perez J, Ruiz A, Pastor P, Lopez De Munain A, Perez-Tur J, Clarimon J, Dementia Genetics Spanish C (2015) Analysis of the CHCHD10 gene in patients with frontotemporal dementia and amyotrophic lateral sclerosis from Spain. Brain. doi: 10.1093/brain/awv175 PubMedCrossRefGoogle Scholar
  42. 42.
    Chio A, Mora G, Sabatelli M, Caponnetto C, Traynor BJ, Johnson JO, Nalls MA, Calvo A, Moglia C, Borghero G, Monsurro MR, La Bella V, Volanti P, Simone I, Salvi F, Logullo FO, Nilo R, Battistini S, Mandrioli J, Tanel R, Murru MR, Mandich P, Zollino M, Conforti FL, Consortium I, Brunetti M, Barberis M, Restagno G, Penco S, Lunetta C (2015) CHCH10 mutations in an Italian cohort of familial and sporadic amyotrophic lateral sclerosis patients. Neurobiol Aging 36(4):1767, e1763–e1766. doi: 10.1016/j.neurobiolaging.2015.01.017
  43. 43.
    Johnson JO, Glynn SM, Gibbs JR, Nalls MA, Sabatelli M, Restagno G, Drory VE, Chio A, Rogaeva E, Traynor BJ (2014) Mutations in the CHCHD10 gene are a common cause of familial amyotrophic lateral sclerosis. Brain 137(Pt 12):e311. doi: 10.1093/brain/awu265 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60(5):748–766. doi: 10.1016/j.neuron.2008.10.010 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Wu CH, Fallini C, Ticozzi N, Keagle PJ, Sapp PC, Piotrowska K, Lowe P, Koppers M, McKenna-Yasek D, Baron DM, Kost JE, Gonzalez-Perez P, Fox AD, Adams J, Taroni F, Tiloca C, Leclerc AL, Chafe SC, Mangroo D, Moore MJ, Zitzewitz JA, Xu ZS, van den Berg LH, Glass JD, Siciliano G, Cirulli ET, Goldstein DB, Salachas F, Meininger V, Rossoll W, Ratti A, Gellera C, Bosco DA, Bassell GJ, Silani V, Drory VE, Brown RH Jr, Landers JE (2012) Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488(7412):499–503. doi: 10.1038/nature11280 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Smith BN, Ticozzi N, Fallini C, Gkazi AS, Topp S, Kenna KP, Scotter EL, Kost J, Keagle P, Miller JW, Calini D, Vance C, Danielson EW, Troakes C, Tiloca C, Al-Sarraj S, Lewis EA, King A, Colombrita C, Pensato V, Castellotti B, de Belleroche J, Baas F, ten Asbroek AL, Sapp PC, McKenna-Yasek D, McLaughlin RL, Polak M, Asress S, Esteban-Perez J, Munoz-Blanco JL, Simpson M, Consortium S, van Rheenen W, Diekstra FP, Lauria G, Duga S, Corti S, Cereda C, Corrado L, Soraru G, Morrison KE, Williams KL, Nicholson GA, Blair IP, Dion PA, Leblond CS, Rouleau GA, Hardiman O, Veldink JH, van den Berg LH, Al-Chalabi A, Pall H, Shaw PJ, Turner MR, Talbot K, Taroni F, Garcia-Redondo A, Wu Z, Glass JD, Gellera C, Ratti A, Brown RH Jr., Silani V, Shaw CE, Landers JE (2014) Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron 84(2):324–331. doi: 10.1016/j.neuron.2014.09.027 CrossRefGoogle Scholar
  47. 47.
    Syriani E, Salvans C, Salvado M, Morales M, Lorenzo L, Cazorla S, Gamez J (2014) PFN1 mutations are also rare in the Catalan population with amyotrophic lateral sclerosis. J Neurol 261(12):2387–2392. doi: 10.1007/s00415-014-7501-x PubMedCrossRefGoogle Scholar
  48. 48.
    Chen Y, Zheng ZZ, Huang R, Chen K, Song W, Zhao B, Chen X, Yang Y, Yuan L, Shang HF (2013) PFN1 mutations are rare in Han Chinese populations with amyotrophic lateral sclerosis. Neurobiol Aging 34 (7):1922, e1921–e1925. doi: 10.1016/j.neurobiolaging.2013.01.013
  49. 49.
    Daoud H, Dobrzeniecka S, Camu W, Meininger V, Dupre N, Dion PA, Rouleau GA (2013) Mutation analysis of PFN1 in familial amyotrophic lateral sclerosis patients. Neurobiol Aging 34(4):1311, e1311–e1312. doi: 10.1016/j.neurobiolaging.2012.09.001
  50. 50.
    Ingre C, Landers JE, Rizik N, Volk AE, Akimoto C, Birve A, Hubers A, Keagle PJ, Piotrowska K, Press R, Andersen PM, Ludolph AC, Weishaupt JH (2013) A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic, and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts. Neurobiol Aging 34(6):1708, e1701–e1706. doi: 10.1016/j.neurobiolaging.2012.10.009
  51. 51.
    Lattante S, Le Ber I, Camuzat A, Brice A, Kabashi E (2013) Mutations in the PFN1 gene are not a common cause in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration in France. Neurobiol Aging 34(6):1709, e1701–e1702. doi: 10.1016/j.neurobiolaging.2012.10.026
  52. 52.
    Pensato V, Tiloca C, Corrado L, Bertolin C, Sardone V, Del Bo R, Calini D, Mandrioli J, Lauria G, Mazzini L, Querin G, Ceroni M, Cantello R, Corti S, Castellotti B, Solda G, Duga S, Comi GP, Cereda C, Soraru G, D’Alfonso S, Taroni F, Shaw CE, Landers JE, Ticozzi N, Ratti A, Gellera C, Silani V, Consortium S (2015) TUBA4A gene analysis in sporadic amyotrophic lateral sclerosis: identification of novel mutations. J Neurol 262(5):1376–1378. doi: 10.1007/s00415-015-7739-y CrossRefGoogle Scholar
  53. 53.
    Rademakers R, van Blitterswijk M (2014) Excess of rare damaging TUBA4A variants suggests cytoskeletal defects in ALS. Neuron 84(2):241–243. doi: 10.1016/j.neuron.2014.10.002 PubMedCrossRefGoogle Scholar
  54. 54.
    Vidal-Taboada JM, Lopez-Lopez A, Salvado M, Lorenzo L, Garcia C, Mahy N, Rodriguez MJ, Gamez J (2015) UNC13A confers risk for sporadic ALS and influences survival in a Spanish cohort. J Neurol. doi: 10.1007/s00415-015-7843-z PubMedCrossRefGoogle Scholar
  55. 55.
    Daoud H, Belzil V, Desjarlais A, Camu W, Dion PA, Rouleau GA (2010) Analysis of the UNC13A gene as a risk factor for sporadic amyotrophic lateral sclerosis. Arch Neurol 67(4):516–517. doi: 10.1001/archneurol.2010.46 PubMedCrossRefGoogle Scholar
  56. 56.
    van Es MA, Veldink JH, Saris CG, Blauw HM, van Vught PW, Birve A, Lemmens R, Schelhaas HJ, Groen EJ, Huisman MH, van der Kooi AJ, de Visser M, Dahlberg C, Estrada K, Rivadeneira F, Hofman A, Zwarts MJ, van Doormaal PT, Rujescu D, Strengman E, Giegling I, Muglia P, Tomik B, Slowik A, Uitterlinden AG, Hendrich C, Waibel S, Meyer T, Ludolph AC, Glass JD, Purcell S, Cichon S, Nothen MM, Wichmann HE, Schreiber S, Vermeulen SH, Kiemeney LA, Wokke JH, Cronin S, McLaughlin RL, Hardiman O, Fumoto K, Pasterkamp RJ, Meininger V, Melki J, Leigh PN, Shaw CE, Landers JE, Al-Chalabi A, Brown RH Jr, Robberecht W, Andersen PM, Ophoff RA, van den Berg LH (2009) Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat Genet 41(10):1083–1087. doi: 10.1038/ng.442 PubMedCrossRefGoogle Scholar
  57. 57.
    Diekstra FP, Van Deerlin VM, van Swieten JC, Al-Chalabi A, Ludolph AC, Weishaupt JH, Hardiman O, Landers JE, Brown RH Jr, van Es MA, Pasterkamp RJ, Koppers M, Andersen PM, Estrada K, Rivadeneira F, Hofman A, Uitterlinden AG, van Damme P, Melki J, Meininger V, Shatunov A, Shaw CE, Leigh PN, Shaw PJ, Morrison KE, Fogh I, Chio A, Traynor BJ, Czell D, Weber M, Heutink P, de Bakker PI, Silani V, Robberecht W, van den Berg LH, Veldink JH (2014) C9orf72 and UNC13A are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: a genome-wide meta-analysis. Ann Neurol 76(1):120–133. doi: 10.1002/ana.24198 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Chio A, Mora G, Restagno G, Brunetti M, Ossola I, Barberis M, Ferrucci L, Canosa A, Manera U, Moglia C, Fuda G, Traynor BJ, Calvo A (2013) UNC13A influences survival in Italian amyotrophic lateral sclerosis patients: a population-based study. Neurobiol Aging 34(1):357, e351–e355. doi: 10.1016/j.neurobiolaging.2012.07.016
  59. 59.
    Pupillo E, Messina P, Giussani G, Logroscino G, Zoccolella S, Chio A, Calvo A, Corbo M, Lunetta C, Marin B, Mitchell D, Hardiman O, Rooney J, Stevic Z, Bandettini di Poggio M, Filosto M, Cotelli MS, Perini M, Riva N, Tremolizzo L, Vitelli E, Damiani D, Beghi E, Consortium E (2014) Physical activity and amyotrophic lateral sclerosis: a European population-based case–control study. Ann Neurol 75(5):708–716. doi: 10.1002/ana.24150 CrossRefGoogle Scholar
  60. 60.
    Ingre C, Roos PM, Piehl F, Kamel F, Fang F (2015) Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol 7:181–193. doi: 10.2147/CLEP.S37505 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Seelen M, van Doormaal PT, Visser AE, Huisman MH, Roozekrans MH, de Jong SW, van der Kooi AJ, de Visser M, Voermans NC, Veldink JH, van den Berg LH (2014) Prior medical conditions and the risk of amyotrophic lateral sclerosis. J Neurol 261(10):1949–1956. doi: 10.1007/s00415-014-7445-1 PubMedCrossRefGoogle Scholar
  62. 62.
    Chio A, Benzi G, Dossena M, Mutani R, Mora G (2005) Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain 128(Pt 3):472–476. doi: 10.1093/brain/awh373 PubMedCrossRefGoogle Scholar
  63. 63.
    Pupillo E, Messina P, Logroscino G, Zoccolella S, Chio A, Calvo A, Corbo M, Lunetta C, Micheli A, Millul A, Vitelli E, Beghi E, Consortium E (2012) Trauma and amyotrophic lateral sclerosis: a case–control study from a population-based registry. Eur J Neurol 19(12):1509–1517. doi: 10.1111/j.1468-1331.2012.03723.x CrossRefGoogle Scholar
  64. 64.
    Schmidt S, Kwee LC, Allen KD, Oddone EZ (2010) Association of ALS with head injury, cigarette smoking and APOE genotypes. J Neurol Sci 291(1–2):22–29. doi: 10.1016/j.jns.2010.01.011 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Chen H, Richard M, Sandler DP, Umbach DM, Kamel F (2007) Head injury and amyotrophic lateral sclerosis. Am J Epidemiol 166(7):810–816. doi: 10.1093/aje/kwm153 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Dupuis L, Corcia P, Fergani A, Gonzalez De Aguilar JL, Bonnefont-Rousselot D, Bittar R, Seilhean D, Hauw JJ, Lacomblez L, Loeffler JP, Meininger V (2008) Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology 70(13):1004–1009. doi: 10.1212/01.wnl.0000285080.70324.27 PubMedCrossRefGoogle Scholar
  67. 67.
    Chio A, Calvo A, Ilardi A, Cavallo E, Moglia C, Mutani R, Palmo A, Galletti R, Marinou K, Papetti L, Mora G (2009) Lower serum lipid levels are related to respiratory impairment in patients with ALS. Neurology 73(20):1681–1685. doi: 10.1212/WNL.0b013e3181c1df1e PubMedCrossRefGoogle Scholar
  68. 68.
    Turner MR, Goldacre R, Ramagopalan S, Talbot K, Goldacre MJ (2013) Autoimmune disease preceding amyotrophic lateral sclerosis: an epidemiologic study. Neurology 81(14):1222–1225. doi: 10.1212/WNL.0b013e3182a6cc13 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Hemminki K, Li X, Sundquist J, Sundquist K (2009) Familial risks for amyotrophic lateral sclerosis and autoimmune diseases. Neurogenetics 10(2):111–116. doi: 10.1007/s10048-008-0164-y PubMedCrossRefGoogle Scholar
  70. 70.
    Ravits J (2014) Focality, stochasticity and neuroanatomic propagation in ALS pathogenesis. Exp Neurol 262(Pt B):121–126. doi: 10.1016/j.expneurol.2014.07.021 PubMedCrossRefGoogle Scholar
  71. 71.
    Menon P, Kiernan MC, Vucic S (2014) ALS pathophysiology: insights from the split-hand phenomenon. Clin Neurophysiol 125(1):186–193. doi: 10.1016/j.clinph.2013.07.022 PubMedCrossRefGoogle Scholar
  72. 72.
    Simon NG, Lee M, Bae JS, Mioshi E, Lin CS, Pfluger CM, Henderson RD, Vucic S, Swash M, Burke D, Kiernan MC (2015) Dissociated lower limb muscle involvement in amyotrophic lateral sclerosis. J Neurol 262(6):1424–1432. doi: 10.1007/s00415-015-7721-8 PubMedCrossRefGoogle Scholar
  73. 73.
    Rosenbohm A, Kassubek J, Weydt P, Marroquin N, Volk AE, Kubisch C, Huppertz HJ, Weber M, Andersen PM, Weishaupt JH, Ludolph AC, Group ALSSR (2014) Can lesions to the motor cortex induce amyotrophic lateral sclerosis? J Neurol 261(2):283–290. doi: 10.1007/s00415-013-7185-7 CrossRefGoogle Scholar
  74. 74.
    Valavanis A, Schwarz U, Baumann CR, Weller M, Linnebank M (2014) Amyotrophic lateral sclerosis after embolization of cerebral arterioveneous malformations. J Neurol 261(4):732–737. doi: 10.1007/s00415-014-7260-8 PubMedCrossRefGoogle Scholar
  75. 75.
    Chio A, Calvo A, Moglia C, Mazzini L, Mora G, Group Ps (2011) Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry 82(7):740–746. doi: 10.1136/jnnp.2010.235952 PubMedCrossRefGoogle Scholar
  76. 76.
    Schabhuttl M, Wieland T, Senderek J, Baets J, Timmerman V, De Jonghe P, Reilly MM, Stieglbauer K, Laich E, Windhager R, Erwa W, Trajanoski S, Strom TM, Auer-Grumbach M (2014) Whole-exome sequencing in patients with inherited neuropathies: outcome and challenges. J Neurol 261(5):970–982. doi: 10.1007/s00415-014-7289-8 PubMedCrossRefGoogle Scholar
  77. 77.
    Munch C, Sedlmeier R, Meyer T, Homberg V, Sperfeld AD, Kurt A, Prudlo J, Peraus G, Hanemann CO, Stumm G, Ludolph AC (2004) Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology 63(4):724–726PubMedCrossRefGoogle Scholar
  78. 78.
    Puls I, Jonnakuty C, LaMonte BH, Holzbaur EL, Tokito M, Mann E, Floeter MK, Bidus K, Drayna D, Oh SJ, Brown RH Jr, Ludlow CL, Fischbeck KH (2003) Mutant dynactin in motor neuron disease. Nat Genet 33(4):455–456. doi: 10.1038/ng1123 PubMedCrossRefGoogle Scholar
  79. 79.
    Sevilla T, Cuesta A, Chumillas MJ, Mayordomo F, Pedrola L, Palau F, Vilchez JJ (2003) Clinical, electrophysiological and morphological findings of Charcot–Marie–Tooth neuropathy with vocal cord palsy and mutations in the GDAP1 gene. Brain 126(Pt 9):2023–2033. doi: 10.1093/brain/awg202 PubMedCrossRefGoogle Scholar
  80. 80.
    Zimon M, Baets J, Fabrizi GM, Jaakkola E, Kabzinska D, Pilch J, Schindler AB, Cornblath DR, Fischbeck KH, Auer-Grumbach M, Guelly C, Huber N, De Vriendt E, Timmerman V, Suter U, Hausmanowa-Petrusewicz I, Niemann A, Kochanski A, De Jonghe P, Jordanova A (2011) Dominant GDAP1 mutations cause predominantly mild CMT phenotypes. Neurology 77(6):540–548. doi: 10.1212/WNL.0b013e318228fc70 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Strickland AV, Schabhuttl M, Offenbacher H, Synofzik M, Hauser NS, Brunner-Krainz M, Gruber-Sedlmayr U, Moore SA, Windhager R, Bender B, Harms M, Klebe S, Young P, Kennerson M, Garcia AS, Gonzalez MA, Zuchner S, Schule R, Shy ME, Auer-Grumbach M (2015) Mutation screen reveals novel variants and expands the phenotypes associated with DYNC1H1. J Neurol. doi: 10.1007/s00415-015-7727-2 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Weedon MN, Hastings R, Caswell R, Xie W, Paszkiewicz K, Antoniadi T, Williams M, King C, Greenhalgh L, Newbury-Ecob R, Ellard S (2011) Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot–Marie–Tooth disease. Am J Hum Genet 89(2):308–312. doi: 10.1016/j.ajhg.2011.07.002 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Liu YT, Laura M, Hersheson J, Horga A, Jaunmuktane Z, Brandner S, Pittman A, Hughes D, Polke JM, Sweeney MG, Proukakis C, Janssen JC, Auer-Grumbach M, Zuchner S, Shields KG, Reilly MM, Houlden H (2014) Extended phenotypic spectrum of KIF5A mutations: from spastic paraplegia to axonal neuropathy. Neurology 83(7):612–619. doi: 10.1212/WNL.0000000000000691 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Daud D, Griffin H, Douroudis K, Kleinle S, Eglon G, Pyle A, Chinnery PF, Horvath R (2015) Whole exome sequencing and the clinician: we need clinical skills and functional validation in variant filtering. J Neurol 262(7):1673–1677. doi: 10.1007/s00415-015-7755-y PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Al-Chalabi A, Andersen PM, Nilsson P, Chioza B, Andersson JL, Russ C, Shaw CE, Powell JF, Leigh PN (1999) Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet 8(2):157–164PubMedCrossRefGoogle Scholar
  86. 86.
    Hensiek A, Kirker S, Reid E (2015) Diagnosis, investigation and management of hereditary spastic paraplegias in the era of next-generation sequencing. J Neurol 262(7):1601–1612. doi: 10.1007/s00415-014-7598-y PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133. doi: 10.1126/science.1134108 PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Sarro L, Agosta F, Canu E, Riva N, Prelle A, Copetti M, Riccitelli G, Comi G, Filippi M (2011) Cognitive functions and white matter tract damage in amyotrophic lateral sclerosis: a diffusion tensor tractography study. AJNR Am J Neuroradiol 32(10):1866–1872. doi: 10.3174/ajnr.A2658 PubMedCrossRefGoogle Scholar
  89. 89.
    Lomen-Hoerth C, Murphy J, Langmore S, Kramer JH, Olney RK, Miller B (2003) Are amyotrophic lateral sclerosis patients cognitively normal? Neurology 60(7):1094–1097PubMedCrossRefGoogle Scholar
  90. 90.
    Phukan J, Elamin M, Bede P, Jordan N, Gallagher L, Byrne S, Lynch C, Pender N, Hardiman O (2012) The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry 83(1):102–108. doi: 10.1136/jnnp-2011-300188 PubMedCrossRefGoogle Scholar
  91. 91.
    Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59(7):1077–1079PubMedCrossRefGoogle Scholar
  92. 92.
    Ringholz GM, Appel SH, Bradshaw M, Cooke NA, Mosnik DM, Schulz PE (2005) Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 65(4):586–590. doi: 10.1212/01.wnl.0000172911.39167.b6 PubMedCrossRefGoogle Scholar
  93. 93.
    Wei Q, Chen X, Zheng Z, Huang R, Guo X, Cao B, Zhao B, Shang HF (2014) Frontal lobe function and behavioral changes in amyotrophic lateral sclerosis: a study from Southwest China. J Neurol 261(12):2393–2400. doi: 10.1007/s00415-014-7508-3 PubMedCrossRefGoogle Scholar
  94. 94.
    York C, Olm C, Boller A, McCluskey L, Elman L, Haley J, Seltzer E, Chahine L, Woo J, Rascovsky K, McMillan C, Grossman M (2014) Action verb comprehension in amyotrophic lateral sclerosis and Parkinson’s disease. J Neurol 261(6):1073–1079. doi: 10.1007/s00415-014-7314-y PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Watermeyer TJ, Brown RG, Sidle KC, Oliver DJ, Allen C, Karlsson J, Ellis CM, Shaw CE, Al-Chalabi A, Goldstein LH (2015) Executive dysfunction predicts social cognition impairment in amyotrophic lateral sclerosis. J Neurol 262(7):1681–1690. doi: 10.1007/s00415-015-7761-0 PubMedCrossRefGoogle Scholar
  96. 96.
    Adolphs R (2009) The social brain: neural basis of social knowledge. Annu Rev Psychol 60:693–716. doi: 10.1146/annurev.psych.60.110707.163514 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Elamin M, Pender N, Hardiman O, Abrahams S (2012) Social cognition in neurodegenerative disorders: a systematic review. J Neurol Neurosurg Psychiatry 83(11):1071–1079. doi: 10.1136/jnnp-2012-302817 PubMedCrossRefGoogle Scholar
  98. 98.
    Burke T, Elamin M, Galvin M, Hardiman O, Pender N (2015) Caregiver burden in amyotrophic lateral sclerosis: a cross-sectional investigation of predictors. J Neurol 262(6):1526–1532. doi: 10.1007/s00415-015-7746-z PubMedCrossRefGoogle Scholar
  99. 99.
    Weis J, Katona I, Muller-Newen G, Sommer C, Necula G, Hendrich C, Ludolph AC, Sperfeld AD (2011) Small-fiber neuropathy in patients with ALS. Neurology 76(23):2024–2029. doi: 10.1212/WNL.0b013e31821e553a PubMedCrossRefGoogle Scholar
  100. 100.
    Truini A, Biasiotta A, Onesti E, Di Stefano G, Ceccanti M, La Cesa S, Pepe A, Giordano C, Cruccu G, Inghilleri M (2015) Small-fibre neuropathy related to bulbar and spinal-onset in patients with ALS. J Neurol 262(4):1014–1018. doi: 10.1007/s00415-015-7672-0 PubMedCrossRefGoogle Scholar
  101. 101.
    Gregory R, Mills K, Donaghy M (1993) Progressive sensory nerve dysfunction in amyotrophic lateral sclerosis: a prospective clinical and neurophysiological study. J Neurol 240(5):309–314PubMedCrossRefGoogle Scholar
  102. 102.
    Ravits J, Laurie P, Fan Y, Moore DH (2007) Implications of ALS focality: rostral-caudal distribution of lower motor neuron loss postmortem. Neurology 68(19):1576–1582. doi: 10.1212/01.wnl.0000261045.57095.56 PubMedCrossRefGoogle Scholar
  103. 103.
    Ferrari G, Grisan E, Scarpa F, Fazio R, Comola M, Quattrini A, Comi G, Rama P, Riva N (2014) Corneal confocal microscopy reveals trigeminal small sensory fiber neuropathy in amyotrophic lateral sclerosis. Front Aging Neurosci 6:278. doi: 10.3389/fnagi.2014.00278 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Chio A, Logroscino G, Hardiman O, Swingler R, Mitchell D, Beghi E, Traynor BG, Eurals C (2009) Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler 10(5–6):310–323. doi: 10.3109/17482960802566824 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Elamin M, Bede P, Montuschi A, Pender N, Chio A, Hardiman O (2015) Predicting prognosis in amyotrophic lateral sclerosis: a simple algorithm. J Neurol 262(6):1447–1454. doi: 10.1007/s00415-015-7731-6 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Kimura F, Fujimura C, Ishida S, Nakajima H, Furutama D, Uehara H, Shinoda K, Sugino M, Hanafusa T (2006) Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology 66(2):265–267. doi: 10.1212/01.wnl.0000194316.91908.8a PubMedCrossRefGoogle Scholar
  107. 107.
    Czaplinski A, Yen AA, Simpson EP, Appel SH (2006) Predictability of disease progression in amyotrophic lateral sclerosis. Muscle Nerve 34(6):702–708. doi: 10.1002/mus.20658 PubMedCrossRefGoogle Scholar
  108. 108.
    del Aguila MA, Longstreth WT Jr, McGuire V, Koepsell TD, van Belle G (2003) Prognosis in amyotrophic lateral sclerosis: a population-based study. Neurology 60(5):813–819PubMedCrossRefGoogle Scholar
  109. 109.
    Elamin M, Phukan J, Bede P, Jordan N, Byrne S, Pender N, Hardiman O (2011) Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia. Neurology 76(14):1263–1269. doi: 10.1212/WNL.0b013e318214359f PubMedCrossRefGoogle Scholar
  110. 110.
    Montuschi A, Iazzolino B, Calvo A, Moglia C, Lopiano L, Restagno G, Brunetti M, Ossola I, Lo Presti A, Cammarosano S, Canosa A, Chio A (2015) Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy. J Neurol Neurosurg Psychiatry 86(2):168–173. doi: 10.1136/jnnp-2013-307223 PubMedCrossRefGoogle Scholar
  111. 111.
    Testa D, Lovati R, Ferrarini M, Salmoiraghi F, Filippini G (2004) Survival of 793 patients with amyotrophic lateral sclerosis diagnosed over a 28-year period. Amyotroph Lateral Scler Other Motor Neuron Disord 5(4):208–212PubMedCrossRefGoogle Scholar
  112. 112.
    Chio A, Mora G, Leone M, Mazzini L, Cocito D, Giordana MT, Bottacchi E, Mutani R, Piemonte Vd, Piemonte, Valle d’Aosta Register for ALS (2002) Early symptom progression rate is related to ALS outcome: a prospective population-based study. Neurology 59(1):99–103PubMedCrossRefGoogle Scholar
  113. 113.
    Creemers H, Grupstra H, Nollet F, van den Berg LH, Beelen A (2015) Prognostic factors for the course of functional status of patients with ALS: a systematic review. J Neurol 262(6):1407–1423. doi: 10.1007/s00415-014-7564-8 PubMedCrossRefGoogle Scholar
  114. 114.
    Desport JC, Preux PM, Truong CT, Courat L, Vallat JM, Couratier P (2000) Nutritional assessment and survival in ALS patients. Amyotroph Lateral Scler Other Motor Neuron Disord 1(2):91–96PubMedCrossRefGoogle Scholar
  115. 115.
    Kasarskis EJ, Berryman S, Vanderleest JG, Schneider AR, McClain CJ (1996) Nutritional status of patients with amyotrophic lateral sclerosis: relation to the proximity of death. Am J Clin Nutr 63(1):130–137PubMedCrossRefGoogle Scholar
  116. 116.
    Jawaid A, Murthy SB, Wilson AM, Qureshi SU, Amro MJ, Wheaton M, Simpson E, Harati Y, Strutt AM, York MK, Schulz PE (2010) A decrease in body mass index is associated with faster progression of motor symptoms and shorter survival in ALS. Amyotroph Lateral Scler 11(6):542–548. doi: 10.3109/17482968.2010.482592 PubMedCrossRefGoogle Scholar
  117. 117.
    Reich-Slotky R, Andrews J, Cheng B, Buchsbaum R, Levy D, Kaufmann P, Thompson JL (2013) Body mass index (BMI) as predictor of ALSFRS-R score decline in ALS patients. Amyotroph Lateral Scler Frontotemporal Degener 14(3):212–216. doi: 10.3109/21678421.2013.770028 PubMedCrossRefGoogle Scholar
  118. 118.
    Ahmed RM, Mioshi E, Caga J, Shibata M, Zoing M, Bartley L, Piguet O, Hodges JR, Kiernan MC (2014) Body mass index delineates ALS from FTD: implications for metabolic health. J Neurol 261(9):1774–1780. doi: 10.1007/s00415-014-7416-6 PubMedCrossRefGoogle Scholar
  119. 119.
    Marrali G, Casale F, Salamone P, Fuda G, Caorsi C, Amoroso A, Brunetti M, Restagno G, Barberis M, Bertuzzo D, Canosa A, Moglia C, Calvo A, Chio A (2014) NADPH oxidase (NOX2) activity is a modifier of survival in ALS. J Neurol 261(11):2178–2183. doi: 10.1007/s00415-014-7470-0 PubMedCrossRefGoogle Scholar
  120. 120.
    Abraham A, Drory VE (2014) Influence of serum uric acid levels on prognosis and survival in amyotrophic lateral sclerosis: a meta-analysis. J Neurol 261(6):1133–1138. doi: 10.1007/s00415-014-7331-x PubMedCrossRefGoogle Scholar
  121. 121.
    Cetin H, Klickovic U, Rath J, Zulehner G, Fuzi J, Reichardt B, Hagmann M, Wanschitz J, Loscher WN, Auff E, Zimprich F (2015) Associations between co-medications and survival in ALS-a cohort study from Austria. J Neurol 262(7):1698–1705. doi: 10.1007/s00415-015-7767-7 PubMedCrossRefGoogle Scholar
  122. 122.
    Gordon PH, Cheng B, Katz IB, Pinto M, Hays AP, Mitsumoto H, Rowland LP (2006) The natural history of primary lateral sclerosis. Neurology 66(5):647–653. doi: 10.1212/01.wnl.0000200962.94777.71 PubMedCrossRefGoogle Scholar
  123. 123.
    Turner MR, Parton MJ, Shaw CE, Leigh PN, Al-Chalabi A (2003) Prolonged survival in motor neuron disease: a descriptive study of the King’s database 1990–2002. J Neurol Neurosurg Psychiatry 74(7):995–997PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron D (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(5):293–299CrossRefGoogle Scholar
  125. 125.
    Lehn AC, Dionisio S, Airey CA, Brown H, Blum S, Henderson R (2014) The tibialis anterior response revisited. J Neurol 261(7):1340–1343. doi: 10.1007/s00415-014-7329-4 PubMedCrossRefGoogle Scholar
  126. 126.
    Tremolizzo L, Susani E, Lunetta C, Corbo M, Ferrarese C, Appollonio I (2014) Primitive reflexes in amyotrophic lateral sclerosis: prevalence and correlates. J Neurol 261(6):1196–1202. doi: 10.1007/s00415-014-7342-7 PubMedCrossRefGoogle Scholar
  127. 127.
    de Carvalho M, Dengler R, Eisen A, England JD, Kaji R, Kimura J, Mills K, Mitsumoto H, Nodera H, Shefner J, Swash M (2008) Electrodiagnostic criteria for diagnosis of ALS. Clin Neurophysiol 119(3):497–503. doi: 10.1016/j.clinph.2007.09.143 PubMedCrossRefGoogle Scholar
  128. 128.
    Davenport RJ, Swingler RJ, Chancellor AM, Warlow CP (1996) Avoiding false positive diagnoses of motor neuron disease: lessons from the Scottish Motor Neuron Disease Register. J Neurol Neurosurg Psychiatry 60(2):147–151PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Traynor BJ, Codd MB, Corr B, Forde C, Frost E, Hardiman O (2000) Amyotrophic lateral sclerosis mimic syndromes: a population-based study. Arch Neurol 57(1):109–113PubMedCrossRefGoogle Scholar
  130. 130.
    Belsh JM, Schiffman PL (1996) The amyotrophic lateral sclerosis (ALS) patient perspective on misdiagnosis and its repercussions. J Neurol Sci 139(Suppl):110–116PubMedCrossRefGoogle Scholar
  131. 131.
    Boelmans K, Kaufmann J, Schmelzer S, Vielhaber S, Kornhuber M, Munchau A, Zierz S, Gaul C (2013) Hirayama disease is a pure spinal motor neuron disorder: a combined DTI and transcranial magnetic stimulation study. J Neurol 260(2):540–548. doi: 10.1007/s00415-012-6674-4 PubMedCrossRefGoogle Scholar
  132. 132.
    Hellmann MA, Kakhlon O, Landau EH, Sadeh M, Giladi N, Schlesinger I, Kidron D, Abramsky O, Reches A, Argov Z, Rabey JM, Chapman J, Rosenmann H, Gal A, Moshe Gomori J, Meiner V, Lossos A (2015) Frequent misdiagnosis of adult polyglucosan body disease. J Neurol. doi: 10.1007/s00415-015-7859-4 PubMedCrossRefGoogle Scholar
  133. 133.
    Grunseich C, Schindler AB, Chen KL, Bakar D, Mankodi A, Traslavina R, Ray-Chaudhury A, Lehky TJ, Baker EH, Maragakis NJ, Tifft CJ, Fischbeck KH (2015) Peripheral neuropathy in a family with Sandhoff disease and SH3TC2 deficiency. J Neurol 262(4):1066–1068. doi: 10.1007/s00415-015-7683-x PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Riva N, Gallia F, Iannaccone S, Corbo M, Terenghi F, Lazzerini A, Cerri F, Comi G, Quattrini A, Nobile-Orazio E (2011) Chronic motor axonal neuropathy. JPNS 16(4):341–346. doi: 10.1111/j.1529-8027.2011.00366.x PubMedCrossRefGoogle Scholar
  135. 135.
    Riva N, Iannaccone S, Corbo M, Casellato C, Sferrazza B, Lazzerini A, Scarlato M, Cerri F, Previtali SC, Nobile-Orazio E, Comi G, Quattrini A (2011) Motor nerve biopsy: clinical usefulness and histopathological criteria. Ann Neurol 69(1):197–201. doi: 10.1002/ana.22110 PubMedCrossRefGoogle Scholar
  136. 136.
    Pestronk A, Cornblath DR, Ilyas AA, Baba H, Quarles RH, Griffin JW, Alderson K, Adams RN (1988) A treatable multifocal motor neuropathy with antibodies to GM1 ganglioside. Ann Neurol 24(1):73–78. doi: 10.1002/ana.410240113 PubMedCrossRefGoogle Scholar
  137. 137.
    Cats EA, Jacobs BC, Yuki N, Tio-Gillen AP, Piepers S, Franssen H, van Asseldonk JT, van den Berg LH, van der Pol WL (2010) Multifocal motor neuropathy: association of anti-GM1 IgM antibodies with clinical features. Neurology 75(22):1961–1967. doi: 10.1212/WNL.0b013e3181ff94c2 PubMedCrossRefGoogle Scholar
  138. 138.
    Vlam L, Piepers S, Sutedja NA, Jacobs BC, Tio-Gillen AP, Stam M, Franssen H, Veldink JH, Cats EA, Notermans NC, Bloem AC, Wadman RI, van der Pol WL, van den Berg LH (2015) Association of IgM monoclonal gammopathy with progressive muscular atrophy and multifocal motor neuropathy: a case–control study. J Neurol 262(3):666–673. doi: 10.1007/s00415-014-7612-4 PubMedCrossRefGoogle Scholar
  139. 139.
    Grimm A, Decard BF, Athanasopoulou I, Schweikert K, Sinnreich M, Axer H (2015) Nerve ultrasound for differentiation between amyotrophic lateral sclerosis and multifocal motor neuropathy. J Neurol 262(4):870–880. doi: 10.1007/s00415-015-7648-0 PubMedCrossRefGoogle Scholar
  140. 140.
    Filippi M, Agosta F, Grosskreutz J, Benatar M, Kassubek J, Verstraete E, Turner MR, Neuroimaging Society in ALS (2015) Progress towards a neuroimaging biomarker for amyotrophic lateral sclerosis. Lancet Neurol 14(8):786–788. doi: 10.1016/S1474-4422(15)00134-9 CrossRefGoogle Scholar
  141. 141.
    Chio A, Pagani M, Agosta F, Calvo A, Cistaro A, Filippi M (2014) Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes. Lancet Neurol 13(12):1228–1240. doi: 10.1016/S1474-4422(14)70167-X PubMedCrossRefGoogle Scholar
  142. 142.
    Cardenas-Blanco A, Machts J, Acosta-Cabronero J, Kaufmann J, Abdulla S, Kollewe K, Petri S, Heinze HJ, Dengler R, Vielhaber S, Nestor PJ (2014) Central white matter degeneration in bulbar- and limb-onset amyotrophic lateral sclerosis. J Neurol 261(10):1961–1967. doi: 10.1007/s00415-014-7434-4 PubMedCrossRefGoogle Scholar
  143. 143.
    Zhang J, Yin X, Zhao L, Evans AC, Song L, Xie B, Li H, Luo C, Wang J (2014) Regional alterations in cortical thickness and white matter integrity in amyotrophic lateral sclerosis. J Neurol 261(2):412–421. doi: 10.1007/s00415-013-7215-5 PubMedCrossRefGoogle Scholar
  144. 144.
    Caiazzo G, Corbo D, Trojsi F, Piccirillo G, Cirillo M, Monsurro MR, Esposito F, Tedeschi G (2014) Distributed corpus callosum involvement in amyotrophic lateral sclerosis: a deterministic tractography study using q-ball imaging. J Neurol 261(1):27–36. doi: 10.1007/s00415-013-7144-3 PubMedCrossRefGoogle Scholar
  145. 145.
    Schuster C, Kasper E, Machts J, Bittner D, Kaufmann J, Benecke R, Teipel S, Vielhaber S, Prudlo J (2014) Longitudinal course of cortical thickness decline in amyotrophic lateral sclerosis. J Neurol 261(10):1871–1880. doi: 10.1007/s00415-014-7426-4 PubMedCrossRefGoogle Scholar
  146. 146.
    Steinbach R, Loewe K, Kaufmann J, Machts J, Kollewe K, Petri S, Dengler R, Heinze HJ, Vielhaber S, Schoenfeld MA, Stoppel CM (2015) Structural hallmarks of amyotrophic lateral sclerosis progression revealed by probabilistic fiber tractography. J Neurol. doi: 10.1007/s00415-015-7841-1 PubMedCrossRefGoogle Scholar
  147. 147.
    Mitsumoto H, Brooks BR, Silani V (2014) Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol 13(11):1127–1138. doi: 10.1016/S1474-4422(14)70129-2 PubMedCrossRefGoogle Scholar
  148. 148.
    Bensimon G, Lacomblez L, Meininger V (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 330(9):585–591. doi: 10.1056/NEJM199403033300901 PubMedCrossRefGoogle Scholar
  149. 149.
    Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V (1996) Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 347(9013):1425–1431PubMedCrossRefGoogle Scholar
  150. 150.
    Traynor BJ, Alexander M, Corr B, Frost E, Hardiman O (2003) An outcome study of riluzole in amyotrophic lateral sclerosis: a population-based study in Ireland, 1996–2000. J Neurol 250(4):473–479. doi: 10.1007/s00415-003-1026-z PubMedCrossRefGoogle Scholar
  151. 151.
    Van den Berg JP, Kalmijn S, Lindeman E, Veldink JH, de Visser M, Van der Graaff MM, Wokke JH, Van den Berg LH (2005) Multidisciplinary ALS care improves quality of life in patients with ALS. Neurology 65(8):1264–1267. doi: 10.1212/01.wnl.0000180717.29273.12 PubMedCrossRefGoogle Scholar
  152. 152.
    Miller RG, Jackson CE, Kasarskis EJ, England JD, Forshew D, Johnston W, Kalra S, Katz JS, Mitsumoto H, Rosenfeld J, Shoesmith C, Strong MJ, Woolley SC, Quality Standards Subcommittee of the American Academy of N (2009) Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: multidisciplinary care, symptom management, and cognitive/behavioral impairment (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 73(15):1227–1233. doi: 10.1212/WNL.0b013e3181bc01a4 CrossRefGoogle Scholar
  153. 153.
    Rooney J, Byrne S, Heverin M, Tobin K, Dick A, Donaghy C, Hardiman O (2015) A multidisciplinary clinic approach improves survival in ALS: a comparative study of ALS in Ireland and Northern Ireland. J Neurol Neurosurg Psychiatry 86(5):496–501. doi: 10.1136/jnnp-2014-309601 PubMedCrossRefGoogle Scholar
  154. 154.
    Ng L, Khan F, Mathers S (2009) Multidisciplinary care for adults with amyotrophic lateral sclerosis or motor neuron disease. Cochrane Database Syst Rev 4:CD007425. doi: 10.1002/14651858.CD007425.pub2 PubMedCrossRefGoogle Scholar
  155. 155.
    Hrastelj J, Robertson NP (2015) Improving survival in amyotrophic lateral sclerosis: future treatments in a modern service. J Neurol 262(7):1791–1793. doi: 10.1007/s00415-015-7811-7 PubMedCrossRefGoogle Scholar
  156. 156.
    Katzberg HD (2015) Neurogenic muscle cramps. J Neurol 262(8):1814–1821. doi: 10.1007/s00415-015-7659-x PubMedCrossRefGoogle Scholar
  157. 157.
    Young CA, Ellis C, Johnson J, Sathasivam S, Pih N (2011) Treatment for sialorrhea (excessive saliva) in people with motor neuron disease/amyotrophic lateral sclerosis. Cochrane Database Syst Rev 5:CD006981. doi: 10.1002/14651858.CD006981.pub2 PubMedCrossRefGoogle Scholar
  158. 158.
    Amador Mdel M, Assouline A, Gonzalez-Bermejo J, Pradat PF (2015) Radiotherapy treatment of sialorrhea in patients with amyotrophic lateral sclerosis requiring non-invasive ventilation. J Neurol 262(8):1981–1983. doi: 10.1007/s00415-015-7848-7 PubMedCrossRefGoogle Scholar
  159. 159.
    Desport JC, Torny F, Lacoste M, Preux PM, Couratier P (2005) Hypermetabolism in ALS: correlations with clinical and paraclinical parameters. Neuro-degener Dis 2(3–4):202–207. doi: 10.1159/000089626 CrossRefGoogle Scholar
  160. 160.
    Wada A, Kawakami M, Liu M, Otaka E, Nishimura A, Liu F, Otsuka T (2015) Development of a new scale for dysphagia in patients with progressive neuromuscular diseases: the Neuromuscular Disease Swallowing Status Scale (NdSSS). J Neurol. doi: 10.1007/s00415-015-7836-y PubMedCrossRefGoogle Scholar
  161. 161.
    Allen JA, Chen R, Ajroud-Driss S, Sufit RL, Heller S, Siddique T, Wolfe L (2013) Gastrostomy tube placement by endoscopy versus radiologic methods in patients with ALS: a retrospective study of complications and outcome. Amyotroph Lateral Scler Frontotemporal Degener 14(4):308–314. doi: 10.3109/21678421.2012.751613 PubMedCrossRefGoogle Scholar
  162. 162.
    Blondet A, Lebigot J, Nicolas G, Boursier J, Person B, Laccoureye L, Aube C (2010) Radiologic versus endoscopic placement of percutaneous gastrostomy in amyotrophic lateral sclerosis: multivariate analysis of tolerance, efficacy, and survival. JVIR 21(4):527–533. doi: 10.1016/j.jvir.2009.11.022 PubMedCrossRefGoogle Scholar
  163. 163.
    Dorst J, Dupuis L, Petri S, Kollewe K, Abdulla S, Wolf J, Weber M, Czell D, Burkhardt C, Hanisch F, Vielhaber S, Meyer T, Frisch G, Kettemann D, Grehl T, Schrank B, Ludolph AC (2015) Percutaneous endoscopic gastrostomy in amyotrophic lateral sclerosis: a prospective observational study. J Neurol 262(4):849–858. doi: 10.1007/s00415-015-7646-2 PubMedCrossRefGoogle Scholar
  164. 164.
    ProGas Study G (2015) Gastrostomy in patients with amyotrophic lateral sclerosis (ProGas): a prospective cohort study. Lancet Neurol 14(7):702–709. doi: 10.1016/S1474-4422(15)00104-0 CrossRefGoogle Scholar
  165. 165.
    Pfeffer G, Povitz M, Gibson GJ, Chinnery PF (2015) Diagnosis of muscle diseases presenting with early respiratory failure. J Neurol 262(5):1101–1114. doi: 10.1007/s00415-014-7526-1 PubMedCrossRefGoogle Scholar
  166. 166.
    Capozzo R, Quaranta VN, Pellegrini F, Fontana A, Copetti M, Carratu P, Panza F, Cassano A, Falcone VA, Tortelli R, Cortese R, Simone IL, Resta O, Logroscino G (2015) Sniff nasal inspiratory pressure as a prognostic factor of tracheostomy or death in amyotrophic lateral sclerosis. J Neurol 262(3):593–603. doi: 10.1007/s00415-014-7613-3 PubMedCrossRefGoogle Scholar
  167. 167.
    Di PWC, Di PSGC (2015) Safety and efficacy of diaphragm pacing in patients with respiratory insufficiency due to amyotrophic lateral sclerosis (DiPALS): a multicentre, open-label, randomised controlled trial. Lancet Neurol 14(9):883–892. doi: 10.1016/S1474-4422(15)00152-0 CrossRefGoogle Scholar
  168. 168.
    Bourke SC, Tomlinson M, Williams TL, Bullock RE, Shaw PJ, Gibson GJ (2006) Effects of non-invasive ventilation on survival and quality of life in patients with amyotrophic lateral sclerosis: a randomised controlled trial. Lancet Neurol 5(2):140–147. doi: 10.1016/S1474-4422(05)70326-4 PubMedCrossRefGoogle Scholar
  169. 169.
    Boentert M, Brenscheidt I, Glatz C, Young P (2015) Effects of non-invasive ventilation on objective sleep and nocturnal respiration in patients with amyotrophic lateral sclerosis. J Neurol. doi: 10.1007/s00415-015-7822-4 PubMedCrossRefGoogle Scholar
  170. 170.
    Berlowitz DJ, Howard ME, Fiore JF Jr, Vander Hoorn S, O’Donoghue FJ, Westlake J, Smith A, Beer F, Mathers S, Talman P (2015) Identifying who will benefit from non-invasive ventilation in amyotrophic lateral sclerosis/motor neurone disease in a clinical cohort. J Neurol Neurosurg Psychiatry. doi: 10.1136/jnnp-2014-310055 PubMedCrossRefGoogle Scholar
  171. 171.
    Andersen PM, Borasio GD, Dengler R, Hardiman O, Kollewe K, Leigh PN, Pradat PF, Silani V, Tomik B, Group EW (2007) Good practice in the management of amyotrophic lateral sclerosis: clinical guidelines. An evidence-based review with good practice points. EALSC Working Group. Amyotroph Lateral Scler 8(4):195–213. doi: 10.1080/17482960701262376 CrossRefGoogle Scholar
  172. 172.
    Seitzer F, Kahrass H, Neitzke G, Strech D (2015) The full spectrum of ethical issues in the care of patients with ALS: a systematic qualitative review. J Neurol. doi: 10.1007/s00415-015-7867-4 PubMedCrossRefGoogle Scholar
  173. 173.
    Munroe CA, Sirdofsky MD, Kuru T, Anderson ED (2007) End-of-life decision making in 42 patients with amyotrophic lateral sclerosis. Respir Care 52(8):996–999PubMedGoogle Scholar
  174. 174.
    Diagnosis ETFO, Management of Amyotrophic Lateral S, Andersen PM, Abrahams S, Borasio GD, de Carvalho M, Chio A, Van Damme P, Hardiman O, Kollewe K, Morrison KE, Petri S, Pradat PF, Silani V, Tomik B, Wasner M, Weber M (2012) EFNS guidelines on the clinical management of amyotrophic lateral sclerosis (MALS): revised report of an EFNS task force. Eur J Neurol 19(3):360–375. doi: 10.1111/j.1468-1331.2011.03501.x
  175. 175.
    Shaw J, Brown R, Heinrich P, Dunn S (2013) Doctors’ experience of stress during simulated bad news consultations. Patient Educ Couns 93(2):203–208. doi: 10.1016/j.pec.2013.06.009 PubMedCrossRefGoogle Scholar
  176. 176.
    Shaw JM, Brown RF, Dunn SM (2013) A qualitative study of stress and coping responses in doctors breaking bad news. Patient Educ Couns 91(2):243–248. doi: 10.1016/j.pec.2012.11.006 PubMedCrossRefGoogle Scholar
  177. 177.
    Benditt JO, Smith TS, Tonelli MR (2001) Empowering the individual with ALS at the end-of-life: disease-specific advance care planning. Muscle Nerve 24(12):1706–1709PubMedCrossRefGoogle Scholar
  178. 178.
    Connolly S, Galvin M, Hardiman O (2015) End-of-life management in patients with amyotrophic lateral sclerosis. Lancet Neurol 14(4):435–442. doi: 10.1016/S1474-4422(14)70221-2 PubMedCrossRefGoogle Scholar
  179. 179.
    Lule D, Ehlich B, Lang D, Sorg S, Heimrath J, Kubler A, Birbaumer N, Ludolph AC (2013) Quality of life in fatal disease: the flawed judgement of the social environment. J Neurol 260(11):2836–2843. doi: 10.1007/s00415-013-7068-y PubMedCrossRefGoogle Scholar
  180. 180.
    Lule D, Nonnenmacher S, Sorg S, Heimrath J, Hautzinger M, Meyer T, Kubler A, Birbaumer N, Ludolph AC (2014) Live and let die: existential decision processes in a fatal disease. J Neurol 261(3):518–525. doi: 10.1007/s00415-013-7229-z PubMedCrossRefGoogle Scholar
  181. 181.
    Maessen M, Veldink JH, Onwuteaka-Philipsen BD, Hendricks HT, Schelhaas HJ, Grupstra HF, van der Wal G, van den Berg LH (2014) Euthanasia and physician-assisted suicide in amyotrophic lateral sclerosis: a prospective study. J Neurol 261(10):1894–1901. doi: 10.1007/s00415-014-7424-6 PubMedCrossRefGoogle Scholar
  182. 182.
    Greenaway LP, Martin NH, Lawrence V, Janssen A, Al-Chalabi A, Leigh PN, Goldstein LH (2015) Accepting or declining non-invasive ventilation or gastrostomy in amyotrophic lateral sclerosis: patients’ perspectives. J Neurol 262(4):1002–1013. doi: 10.1007/s00415-015-7665-z PubMedCrossRefGoogle Scholar
  183. 183.
    Keller J, Gorges M, Horn HT, Aho-Ozhan HE, Pinkhardt EH, Uttner I, Kassubek J, Ludolph AC, Lule D (2015) Eye-tracking controlled cognitive function tests in patients with amyotrophic lateral sclerosis: a controlled proof-of-principle study. J Neurol 262(8):1918–1926. doi: 10.1007/s00415-015-7795-3 PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Nilo Riva
    • 1
  • Federica Agosta
    • 2
  • Christian Lunetta
    • 3
  • Massimo Filippi
    • 2
  • Angelo Quattrini
    • 1
  1. 1.Neuropathology Unit, INSPE and Division of Neuroscience, Department of Neurology, Institute of Experimental NeurologySan Raffaele Scientific InstituteMilanItaly
  2. 2.Neuroimaging Research Unit, Division of Neuroscience, Department of Neurology, Institute of Experimental NeurologySan Raffaele Scientific InstituteMilanItaly
  3. 3.NEuroMuscular Omnicentre (NEMO)Niguarda Ca Granda HospitalMilanItaly

Personalised recommendations