Advertisement

Journal of Neurology

, Volume 263, Issue 5, pp 937–953 | Cite as

Coherence in resting-state EEG as a predictor for the recovery from unresponsive wakefulness syndrome

  • Barbara Schorr
  • Winfried Schlee
  • Marion Arndt
  • Andreas Bender
Original Communication

Abstract

We investigated differences of EEG coherence within (short-range), and between (long-range) specified brain areas as diagnostic markers for different states in disorders of consciousness (DOC), and their predictive value for recovery from unresponsive wakefulness syndrome (UWS). EEGs of 73 patients and 24 controls were recorded and coma recovery scale- revised (CRS-R) scores were assessed. CRS-R of UWS patients was collected after 12 months and divided into two groups (improved/unimproved). Frontal, parietal, fronto-parietal, fronto-temporal, and fronto-occipital coherence was computed, as well as EEG power over frontal, parietal, occipital, and temporal areas. Minimally conscious patients (MCS) and UWS patients could not be differentiated based on their coherence patterns or on EEG power. Fronto-parietal and parietal coherence could positively predict improvement of UWS patients, i.e. recovery from UWS to MCS. Parietal coherence was significantly higher in delta and theta frequencies in the improved group, as well as the coherence between frontal and parietal regions in delta, theta, alpha, and beta frequencies. High parietal delta and theta, and high fronto-parietal theta and alpha coherence appear to provide strong early evidence for recovery from UWS with high predictive sensitivity and specificity. Short and long-range coherence can have a diagnostic value in the prognosis of recovery from UWS.

Keywords

EEG coherence Resting-state Unresponsive wakefulness syndrome Fronto-parietal network Prognosis Recovery 

Notes

Acknowledgments

This study was conducted in the framework of the KOPFregister, supported by the ZNS-Hannelore Kohl Stiftung, Germany (Grant No. 2011013 awarded to Andreas Bender), and the Deutsche Stiftung Neurologie, Germany.

Compliance with ethical standards

Conflicts of interest

None of the authors have potential conflicts of interest to be disclosed.

Ethical standards

This study has been approved by the ethics committee of the University of Munich and has, therefore, been performed in the accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

The study was approved by the institutional review board of the University of Munich. Healthy controls gave written informed consent prior to participating in the experiment. For patients, written informed consent was provided by the appointed legal surrogates prior to participation.

Supplementary material

415_2016_8084_MOESM1_ESM.pdf (43 kb)
Supplementary material 1 (PDF 43 kb)
415_2016_8084_MOESM2_ESM.pdf (62 kb)
Supplementary material 2 (PDF 61 kb)

References

  1. 1.
    Laureys S, Celesia GG, Cohadon F, Lavrijsen J, Leon-Carrion J, Sannita WG, Sazbon L, Schmutzhard E, von Wild KR, Zeman A, Dolce G, European Task Force on Disorders of C (2010) Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med 8:68. doi: 10.1186/1741-7015-8-68 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Guldenmund P, Stender J, Heine L, Laureys S (2012) Mindsight: diagnostics in disorders of consciousness. Crit Care Res Pract 2012:624724. doi: 10.1155/2012/624724 PubMedPubMedCentralGoogle Scholar
  3. 3.
    PVS TM-STFo (1994) Medical aspects of the persistent vegetative state (2). N Engl J Med 330(22):1572–1579. doi: 10.1056/NEJM199406023302206 CrossRefGoogle Scholar
  4. 4.
    PVS TM-STFo (1994) Medical aspects of the persistent vegetative state (1). N Engl J Med 330(21):1499–1508. doi: 10.1056/NEJM199405263302107 CrossRefGoogle Scholar
  5. 5.
    Giacino JT, Fins JJ, Laureys S, Schiff ND (2014) Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol 10(2):99–114. doi: 10.1038/nrneurol.2013.279 CrossRefPubMedGoogle Scholar
  6. 6.
    Giacino JT, Kalmar K, Whyte J (2004) The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 85(12):2020–2029CrossRefPubMedGoogle Scholar
  7. 7.
    Schnakers C, Giacino J, Kalmar K, Piret S, Lopez E, Boly M, Malone R, Laureys S (2006) Does the FOUR score correctly diagnose the vegetative and minimally conscious states. Ann Neurol 60(6):744–745CrossRefPubMedGoogle Scholar
  8. 8.
    Schnakers C, Giacino J, Laureys S (2010) Coma: detecting signs of consciousness in severely brain injured patients recovering from coma. In: Stone JH, Blouin M (eds) International Encyclopedia of Rehabilitation. http://cirrie.buffalo.edu/encyclopedia/en/article/133/
  9. 9.
    Giacino JT, Schnakers C, Rodriguez-Moreno D, Kalmar K, Schiff N, Hirsch J (2009) Behavioral assessment in patients with disorders of consciousness: gold standard or fool’s gold? Prog Brain Res 177:33–48. doi: 10.1016/S0079-6123(09)17704-X CrossRefPubMedGoogle Scholar
  10. 10.
    Bekinschtein TA, Manes FF, Villarreal M, Owen AM, Della-Maggiore V (2011) Functional imaging reveals movement preparatory activity in the vegetative state. Front Hum Neurosci 5:5. doi: 10.3389/fnhum.2011.00005 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fischer C, Luaute J, Morlet D (2010) Event-related potentials (MMN and novelty P3) in permanent vegetative or minimally conscious states. Clinical Neurophysiol 121(7):1032–1042. doi: 10.1016/j.clinph.2010.02.005 CrossRefGoogle Scholar
  12. 12.
    Qin P, Di H, Liu Y, Yu S, Gong Q, Duncan N, Weng X, Laureys S, Northoff G (2010) Anterior cingulate activity and the self in disorders of consciousness. Hum Brain Mapp 31(12):1993–2002. doi: 10.1002/hbm.20989 CrossRefPubMedGoogle Scholar
  13. 13.
    Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, Bruno MA, Boveroux P, Schnakers C, Soddu A, Perlbarg V, Ledoux D, Brichant JF, Moonen G, Maquet P, Greicius MD, Laureys S, Boly M (2010) Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133(Pt 1):161–171. doi: 10.1093/brain/awp313 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bender A, Jox RJ, Grill E, Straube A, Lule D (2015) Persistent vegetative state and minimally conscious state: a systematic review and meta-analysis of diagnostic procedures. Dtsch Arztebl Int 112(14):235–242. doi: 10.3238/arztebl.2015.0235 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Donchin E, Karis D, Bashore TR, Coles MGH, Gratton G (1986) Cognitivepsychophysiology and human information processing. In: Coles MGH, Donchin E, Porges SW (eds) Psychophysiology: systems, processes, and applications. Guildford, New York, pp 244–267Google Scholar
  16. 16.
    Risetti M, Formisano R, Toppi J, Quitadamo LR, Bianchi L, Astolfi L, Cincotti F, Mattia D (2013) On ERPs detection in disorders of consciousness rehabilitation. Front Hum Neurosci 7:775CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lulé D, Noirhomme Q, Kleih SC, Chatelle C, Halder S, Demertzi A, Bruno MA, Gosseries O, Vanhaudenhuyse A, Schnakers C, Thonnard M, Soddu A, Kübler A, Laureys S (2013) Probing command following in patients with disorders of consciousness using a brain-computer interface. Clin Neurophysiol 124(1):101–106CrossRefPubMedGoogle Scholar
  18. 18.
    Cavinato M, Volpato C, Silvoni S, Sacchetto M, Merico A, Piccione F (2011) Event-related brain potential modulation in patients with severe brain damage. Clin Neurophysiol 122(4):719–724. doi: 10.1016/j.clinph.2010.08.024 CrossRefPubMedGoogle Scholar
  19. 19.
    Fischer C, Luaute J, Nemoz C, Morlet D, Kirkorian G, Mauguiere F (2006) Improved prediction of awakening or nonawakening from severe anoxic coma using tree-based classification analysis. Crit Care Med 34(5):1520–1524. doi: 10.1097/01.Ccm.0000215823.36344.99 CrossRefPubMedGoogle Scholar
  20. 20.
    Fischer C, Morlet D, Giard M (2000) Mismatch negativity and N100 in comatose patients. Audiol Neurootol 5(3–4):192–197. doi: 10.1159/000013880 CrossRefPubMedGoogle Scholar
  21. 21.
    Kotchoubey B (2005) Event-related potential measures of consciousness: two equations with three unknowns. Prog Brain Res 150:427–444. doi: 10.1016/S0079-6123(05)50030-X CrossRefPubMedGoogle Scholar
  22. 22.
    Schorr B, Schlee W, Arndt M, Lule D, Kolassa IT, Lopez-Rolon A, Bender A (2014) Stability of auditory event-related potentials in coma research. J Neurol 262(2):307–315. doi: 10.1007/s00415-014-7561-y CrossRefPubMedGoogle Scholar
  23. 23.
    Ragazzoni A, Pirulli C, Veniero D, Feurra M, Cincotta M, Giovannelli F, Chiaramonti R, Lino M, Rossi S, Miniussi C (2013) Vegetative versus Minimally Conscious States: a study using TMS-EEG, sensory and event-related potentials. PLoS One 8(2):ARTN e57069. doi: 10.1371/journal.pone.0057069 CrossRefGoogle Scholar
  24. 24.
    Massimini M, Boly M, Casali A, Rosanova M, Tononi G (2009) A perturbational approach for evaluating the brain’s capacity for consciousness. Prog Brain Res 177:201–214. doi: 10.1016/S0079-6123(09)17714-2 CrossRefPubMedGoogle Scholar
  25. 25.
    Gosseries O, Thibaut A, Boly M, Rosanova M, Massimini M, Laureys S (2014) Assessing consciousness in coma and related states using transcranial magnetic stimulation combined with electroencephalography. Ann Fr Anesth 33(2):65–71. doi: 10.1016/j.annfar.2013.11.002 CrossRefGoogle Scholar
  26. 26.
    Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100(1):253–258. doi: 10.1073/pnas.0135058100 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Raichle ME (2015) The brain‘s default mode network. Annu Rev Neurosci 38:433–447. doi: 10.1146/annurev-neuro-071013-014030 CrossRefPubMedGoogle Scholar
  28. 28.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682. doi: 10.1073/pnas.98.2.676 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100(6):3328–3342. doi: 10.1152/jn.90355.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Manganotti P, Formaggio E, Storti SF, Fiaschi A, Battistin L, Tonin P, Piccione F, Cavinato M (2013) Effect of high-frequency repetitive transcranial magnetic stimulation on brain excitability in severely brain-injured patients in minimally conscious or vegetative state. Brain Stimul 6(6):913–921. doi: 10.1016/j.brs.2013.06.006 CrossRefPubMedGoogle Scholar
  31. 31.
    Piccione F, Cavinato M, Manganotti P, Formaggio E, Storti SF, Battistin L, Cagnin A, Tonin P, Dam M (2011) Behavioral and neurophysiological effects of repetitive transcranial magnetic stimulation on the minimally conscious state: a case study. Neurorehabil Neural Repair 25(1):98–102. doi: 10.1177/1545968310369802 CrossRefPubMedGoogle Scholar
  32. 32.
    Jordan D, Ilg R, Riedl V, Schorer A, Grimberg S, Neufang S, Omerovic A, Berger S, Untergehrer G, Preibisch C, Schulz E, Schuster T, Schroter M, Spoormaker V, Zimmer C, Hemmer B, Wohlschlager A, Kochs EF, Schneider G (2013) Simultaneous electroencephalographic and functional magnetic resonance imaging indicate impaired cortical top-down processing in association with anesthetic-induced unconsciousness. Anesthesiology 119(5):1031–1042. doi: 10.1097/ALN.0b013e3182a7ca92 CrossRefPubMedGoogle Scholar
  33. 33.
    Gosseries O, Schnakers C, Ledoux D, Vanhaudenhuyse A, Bruno MA, Demertzi A, Noirhomme Q, Lehembre R, Damas P, Goldman S, Peeters E, Moonen G, Laureys S (2011) Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state. Funct Neurol 26(1):25–30PubMedPubMedCentralGoogle Scholar
  34. 34.
    Sitt JD, King JR, El Karoui I, Rohaut B, Faugeras F, Gramfort A, Cohen L, Sigman M, Dehaene S, Naccache L (2014) Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain 137:2258–2270. doi: 10.1093/brain/awu141 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sara M, Pistoia F (2010) Complexity loss in physiological time series of patients in a vegetative state. Nonlinear Dynamics Psychol Life Sci 14(1):1–13PubMedGoogle Scholar
  36. 36.
    Sara M, Pistoia F, Pasqualetti P, Sebastiano F, Onorati P, Rossini PM (2011) Functional Isolation Within the Cerebral Cortex in the Vegetative State: a Nonlinear Method to Predict Clinical Outcomes. Neurorehabil Neural Repair 25(1):35–42. doi: 10.1177/1545968310378508 CrossRefPubMedGoogle Scholar
  37. 37.
    Cavinato M, Genna C, Manganotti P, Formaggio E, Storti SF, Campostrini S, Arcaro C, Casanova E, Petrone V, Piperno R, Piccione F (2015) Coherence and Consciousness: study of Fronto-Parietal Gamma Synchrony in Patients with Disorders of Consciousness. Brain Topogr 28(4):570–579. doi: 10.1007/s10548-014-0383-5 CrossRefPubMedGoogle Scholar
  38. 38.
    Pereda E, Quiroga RQ, Bhattacharya J (2005) Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol 77(1–2):1–37. doi: 10.1016/j.pneurobio.2005.10.003 CrossRefPubMedGoogle Scholar
  39. 39.
    Babiloni C, Binetti G, Cassetta E, Cerboneschi D, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Lanuzza B, Miniussi C, Moretti DV, Nobili F, Pascual-Marqui RD, Rodriguez G, Romani GL, Salinari S, Tecchio F, Vitali P, Zanetti O, Zappasodi F, Rossini PM (2004) Mapping distributed sources of cortical rhythms in mild Alzheimer’s disease. A multicentric EEG study. Neuroimage 22(1):57–67. doi: 10.1016/j.neuroimage.2003.09.028 CrossRefPubMedGoogle Scholar
  40. 40.
    Nunez PL, Wingeier BM, Silberstein RB (2001) Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Hum Brain Mapp 13(3):125–164CrossRefPubMedGoogle Scholar
  41. 41.
    Salenius S, Kajola M, Thompson WL, Kosslyn S, Hari R (1995) Reactivity of magnetic parieto-occipital alpha rhythm during visual imagery. Electroencephalogr Clin Neurophysiol 95(6):453–462CrossRefPubMedGoogle Scholar
  42. 42.
    Salmelin R, Hari R, Lounasmaa OV, Sams M (1994) Dynamics of brain activation during picture naming. Nature 368(6470):463–465. doi: 10.1038/368463a0 CrossRefPubMedGoogle Scholar
  43. 43.
    Babiloni C, Lizio R, Marzano N, Capotosto P, Soricelli A, Triggiani AI, Cordone S, Gesualdo L, Del Percio C (2015) Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms. Int J Psychophysiol. doi: 10.1016/j.ijpsycho.2015.02.008 Google Scholar
  44. 44.
    Bagnato S, Boccagni C, St’Angelo A, Fingelkurts AA, Fingelkurts AA, Galardi G (2013) Emerging from an unresponsive wakefulness syndrome: brain plasticity has to cross a threshold level. Neurosci Biobehav Rev 37(10):2721–2736. doi: 10.1016/j.neubiorev.2013.09.007 CrossRefPubMedGoogle Scholar
  45. 45.
    Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput Intell Neurosci 2011:9CrossRefGoogle Scholar
  46. 46.
    Cui J, Xu L, Bressler SL, Ding M, Liang H (2008) BSMART: a Matlab/C toolbox for analysis of multichannel neural time series. Neural Netw 21(8):1094–1104. doi: 10.1016/j.neunet.2008.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Walter DO (1968) Coherence as a measure of relationship between EEG records. Electroencephalogr Clin Neurophysiol 24(3):282PubMedGoogle Scholar
  48. 48.
    Box G, Jenkins GM, Reinsel GC (1994) Time series analysis: forecasting and control, 3rd edn. Prentice Hall, Englewood CliffsGoogle Scholar
  49. 49.
    Gloor P, Ball G, Schaul N (1977) Brain lesions that produce delta waves in the EEG. Neurology 27(4):326–333CrossRefPubMedGoogle Scholar
  50. 50.
    Andraus ME, Alves-Leon SV (2011) Non-epileptiform EEG abnormalities: an overview. Arq Neuropsiquiatr 69(5):829–835CrossRefPubMedGoogle Scholar
  51. 51.
    Pinheiro J, Bates D, De Roy S, Sarker D, Team RDC (2013) nlme: linear and nonlinear mixed effects modelsGoogle Scholar
  52. 52.
    Team RDC (2008) R: a language and environment for statistical computingGoogle Scholar
  53. 53.
    Noble WS (2009) How does multiple testing correction work? Nat Biotechnol 27(12):1135–1137. doi: 10.1038/nbt1209-1135 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Roback P, Askins RA (2005) Judicious use of multiple hypothesis tests. Conserv Biol 19(1):261–267. doi: 10.1111/j.1523-1739.2005.00269.x CrossRefGoogle Scholar
  55. 55.
    Shaffer J (1995) multiple hypothesis testing. Annu Rev Psychol 46:561–584CrossRefGoogle Scholar
  56. 56.
    Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35CrossRefPubMedGoogle Scholar
  57. 57.
    Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29(2–3):169–195. doi: 10.1016/S0165-0173(98)00056-3 CrossRefPubMedGoogle Scholar
  58. 58.
    Gross J, Pollok B, Dirks A, Timmermann L, Butz A, Schnitzler A (2005) Task-dependent oscillations during unimanual and bimanual movements in the human primary motor cortex and SMA studied with magnetoencephalography. Neuroimage 26(1):91–98. doi: 10.1016/j.neuroimage.2005.01.025 CrossRefPubMedGoogle Scholar
  59. 59.
    Tallon-Baudry C, Bertrand O, Fischer C (2001) Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance. J Neurosci 21(20):RC177PubMedGoogle Scholar
  60. 60.
    Sehatpour P, Molholm S, Schwartz TH, Mahoney JR, Mehta AD, Javitt DC, Stanton PK, Foxe JJ (2008) A human intracranial study of long-range oscillatory coherence across a frontal-occipital-hippocampal brain network during visual object processing. Proc Natl Acad Sci USA 105(11):4399–4404. doi: 10.1073/pnas.0708418105 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Donner TH, Siegel M, Oostenveld R, Fries P, Bauer M, Engel AK (2007) Population activity in the human dorsal pathway predicts the accuracy of visual motion detection. J Neurophysiol 98(1):345–359. doi: 10.1152/jn.01141.2006 CrossRefPubMedGoogle Scholar
  62. 62.
    Bagnato S, Boccagni C, Sant’Angelo A, Prestandrea C, Mazzilli R, Galardi G (2015) EEG predictors of outcome in patients with disorders of consciousness admitted for intensive rehabilitation. Clin Neurophysiol 126(5):959–966. doi: 10.1016/j.clinph.2014.08.005 CrossRefPubMedGoogle Scholar
  63. 63.
    Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9(10):474–480. doi: 10.1016/j.tics.2005.08.011 CrossRefPubMedGoogle Scholar
  64. 64.
    Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8(4):194–208CrossRefPubMedGoogle Scholar
  65. 65.
    Knyazev GG (2013) EEG correlates of self-referential processing. Front Hum Neurosci 7:264. doi: 10.3389/fnhum.2013.00264 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Palva S, Palva JM (2007) New vistas for alpha-frequency band oscillations. Trends Neurosci 30(4):150–158. doi: 10.1016/j.tins.2007.02.001 CrossRefPubMedGoogle Scholar
  67. 67.
    Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G (2012) DMN operational synchrony relates to self-consciousness: evidence from patients in vegetative and minimally conscious states. Open Neuroimag J 6:55–68. doi: 10.2174/1874440001206010055 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Leon-Carrion J, Martin-Rodriguez JF, Damas-Lopez J, Martin JMBY, Dominguez-Morales MR (2008) Brain function in the minimally conscious state: a quantitative neurophysiological study. Clin Neurophysiol 119(7):1506–1514. doi: 10.1016/j.clinph.2008.03.030 CrossRefPubMedGoogle Scholar
  69. 69.
    Srinivasan R, Winter WR, Nunez PL (2006) Source analysis of EEG oscillations using high-resolution EEG and MEG. Prog Brain Res 159:29–42. doi: 10.1016/S0079-6123(06)59003-X CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Vogel W, Broverman DM, Klaiber EL (1968) EEG and mental abilities. Electroencephalogr Clin Neurophysiol 24(2):166–175CrossRefPubMedGoogle Scholar
  71. 71.
    Harmony T (2013) The functional significance of delta oscillations in cognitive processing. Front Integr Neurosci 7:83. doi: 10.3389/fnint.2013.00083 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Babiloni C, Sara M, Vecchio F, Pistoia F, Sebastiano F, Onorati P, Albertini G, Pasqualetti P, Cibelli G, Buffo P, Rossini PM (2009) Cortical sources of resting-state alpha rhythms are abnormal in persistent vegetative state patients. Clin Neurophysiol 120(4):719–729. doi: 10.1016/j.clinph.2009.02.157 CrossRefPubMedGoogle Scholar
  73. 73.
    Alkire MT, Miller J (2005) General anesthesia and the neural correlates of consciousness. Prog Brain Res 150:229–244. doi: 10.1016/S0079-6123(05)50017-7 CrossRefPubMedGoogle Scholar
  74. 74.
    Laureys S (2005) The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 9(12):556–559. doi: 10.1016/j.tics.2005.10.010 CrossRefPubMedGoogle Scholar
  75. 75.
    Noirhomme Q, Soddu A, Lehembre R, Vanhaudenhuyse A, Boveroux P, Boly M, Laureys S (2010) Brain connectivity in pathological and pharmacological coma. Front Syst Neurosci 4:160. doi: 10.3389/fnsys.2010.00160 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Gusnard DA, Raichle ME, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2(10):685–694. doi: 10.1038/35094500 CrossRefPubMedGoogle Scholar
  77. 77.
    Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-State Functional Connectivity Reflects Structural Connectivity in the Default Mode Network. Cereb Cortex 19(1):72–78. doi: 10.1093/cercor/bhn059 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Boly M, Phillips C, Balteau E, Schnakers C, Degueldre C, Moonen G, Luxen A, Peigneux P, Faymonville ME, Maquet P, Laureys S (2008) Consciousness and cerebral baseline activity fluctuations. Hum Brain Mapp 29(7):868–874. doi: 10.1002/hbm.20602 CrossRefPubMedGoogle Scholar
  79. 79.
    Davey MP, Victor JD, Schiff ND (2000) Power spectra and coherence in the EEG of a vegetative patient with severe asymmetric brain damage. Clin Neurophysiol 111(11):1949–1954. doi: 10.1016/S1388-2457(00)00435-1 CrossRefPubMedGoogle Scholar
  80. 80.
    Boveroux P, Bonhomme V, Boly M, Vanhaudenhuyse A, Maquet P, Laureys S (2008) Brain function in physiologically, pharmacologically, and pathologically altered states of consciousness. Int Anesthesiol Clin 46(3):131–146. doi: 10.1097/AIA.0b013e318181a8b3 CrossRefPubMedGoogle Scholar
  81. 81.
    Cauda F, Micon BM, Sacco K, Duca S, D’Agata F, Geminiani G, Canavero S (2009) Disrupted intrinsic functional connectivity in the vegetative state. J Neurol Neurosurg Psychiatry 80(4):429–431. doi: 10.1136/jnnp.2007.142349 CrossRefPubMedGoogle Scholar
  82. 82.
    Stender J, Gosseries O, Bruno MA (2014) Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study (vol 384, pg 514, 2014). Lancet 384(9942):494CrossRefGoogle Scholar
  83. 83.
    Spironelli C, Angrilli A (2009) EEG delta band as a marker of brain damage in aphasic patients after recovery of language. Neuropsychologia 47(4):988–994. doi: 10.1016/j.neuropsychologia.2008.10.019 CrossRefPubMedGoogle Scholar
  84. 84.
    Nagata K, Tagawa K, Hiroi S, Shishido F, Uemura K (1989) Electroencephalographic correlates of blood flow and oxygen metabolism provided by positron emission tomography in patients with cerebral infarction. Electroencephalogr Clin Neurophysiol 72(1):16–30CrossRefPubMedGoogle Scholar
  85. 85.
    Herrmann CS, Demiralp T (2005) Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol 116(12):2719–2733. doi: 10.1016/j.clinph.2005.07.007 CrossRefPubMedGoogle Scholar
  86. 86.
    Llinas RRRU (1992) Rostrocaudal scan in human bra a global characteristic of the 40 Hz response during sensory input. In: Basar THB (ed) Induced rhythms in the brain. Birkhauser, Boston, pp 147–154CrossRefGoogle Scholar
  87. 87.
    Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224. doi: 10.1146/annurev.neuro.051508.135603 CrossRefPubMedGoogle Scholar
  88. 88.
    van Dellen E, Hillebrand A, Douw L, Heimans JJ, Reijneveld JC, Stam CJ (2013) Local polymorphic delta activity in cortical lesions causes global decreases in functional connectivity. Neuroimage 83:524–532. doi: 10.1016/j.neuroimage.2013.06.009 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Barbara Schorr
    • 1
    • 2
  • Winfried Schlee
    • 3
  • Marion Arndt
    • 1
  • Andreas Bender
    • 1
    • 4
  1. 1.Therapiezentrum BurgauBurgauGermany
  2. 2.Clinical and Biological Psychology, Institute of Psychology and EducationUlm UniversityUlmGermany
  3. 3.Institute for Psychiatry and PsychotherapyUniversity of RegensburgRegensburgGermany
  4. 4.Department of Neurology, Klinikum GrosshadernUniversity of MunichMunichGermany

Personalised recommendations