Advertisement

Journal of Neurology

, Volume 262, Issue 12, pp 2745–2754 | Cite as

Antisaccade errors reveal cognitive control deficits in Parkinson’s disease with freezing of gait

  • Courtney C. Walton
  • Claire O’Callaghan
  • Julie M. Hall
  • Moran Gilat
  • Loren Mowszowski
  • Sharon L. Naismith
  • James R. Burrell
  • James M. Shine
  • Simon J. G. LewisEmail author
Original Communication

Abstract

Freezing of gait is a poorly understood symptom of Parkinson’s disease (PD) that is commonly accompanied by executive dysfunction. This study employed an antisaccade task to measure deficits in inhibitory control in patients with freezing, and to determine if these are associated with a specific pattern of grey matter loss using voxel-based morphometry. PD patients with (n = 15) and without (n = 11) freezing along with 10 age-matched controls were included. A simple prosaccade task was administered, followed by a second antisaccade task that required subjects to either look towards or away from a peripheral target. Behavioral results from the antisaccade task were entered as covariates in the voxel-based morphometry analysis. Patient and control groups performed equally well on the first task. However, patients with freezing were significantly worse on the second, which was driven by a specific impairment in suppressing their responses toward the target on the antisaccade trials. Impaired antisaccade performance was associated with grey matter loss across bilateral visual and fronto-parietal regions. These results suggest that patients with freezing have a significant deficit of inhibitory control that is associated with volume reductions in regions crucial for orchestrating both complex motor behaviors and cognitive control. These findings highlight the inter-relationship between freezing of gait and cognition and confirm that dysfunction along common neural pathways is likely to mediate the widespread cognitive dysfunction that emerges with this symptom.

Keywords

Antisaccades Cognitive control Freezing of gait Parkinson’s disease 

Notes

Acknowledgments

We thank the patients and their families who contribute to our research at the Parkinson’s Disease Research Clinic. We also thank Mr. David Foxe for his help collecting some of the data used in the study.

Compliance with ethical standards

Conflicts of interest

CC Walton is supported by an Australian Postgraduate Award at the University of Sydney. C. O’Callaghan is supported by a National Health and Medical Research Council of Australia (NHMRC) Neil Hamilton Fairley Postdoctoral Fellowship (GNT1091310) at the University of Cambridge. J.M. Hall is supported by an International Postgraduate Research Scholarship at the University of Western Sydney. M. Gilat is supported by an International Postgraduate Research Scholarship at the University of Sydney. L. Mowszowski is supported by an Alzheimer’s Australia Dementia Research Foundation Postdoctoral Research Fellowship at the University of Sydney. S.L. Naismith is supported by an NHMRC Career Development Award No. 1008117. J.R. Burrell was supported in part by funding to Forefront, a collaborative research group dedicated to the study of frontotemporal dementia and motor neuron disease, from the NHMRC program Grant (APP1037746) and the Australian Research Council Centre of Excellence in Cognition and its Disorders Memory Node (CE110001021). J.R. Burrell is also supported by an NHMRC Early Career Fellowship (APP1072451). J.M. Shine is supported by a NHMRC CJ Martin Postdoctoral Fellowship (GNT1072403) at Stanford University. S.J.G. Lewis is supported by an NHMRC Practitioner Fellowship No. 1003007.

References

  1. 1.
    Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A (2011) Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 10(8):734–744. doi: 10.1016/S1474-4422(11)70143-0 CrossRefPubMedGoogle Scholar
  2. 2.
    Walton CC, Shine JM, Hall JM, O’Callaghan C, Mowszowski L, Gilat M, Szeto JY, Naismith SL, Lewis SJ (2015) The major impact of freezing of gait on quality of life in Parkinson’s disease. J Neurol 262(1):108–115. doi: 10.1007/s00415-014-7524-3 CrossRefPubMedGoogle Scholar
  3. 3.
    Lewis SJG, Shine JM (2014) The next step: a common neural mechanism for freezing of gait. Neuroscientist. doi: 10.1177/1073858414559101 PubMedGoogle Scholar
  4. 4.
    Lewis SJ, Barker RA (2009) A pathophysiological model of freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 15(5):333–338. doi: 10.1016/j.parkreldis.2008.08.006 CrossRefPubMedGoogle Scholar
  5. 5.
    Fasano A, Herman T, Tessitore A, Strafella AP, Bohnen NI (2015) Neuroimaging of freezing of gait. J Parkinson’s Dis. doi: 10.3233/JPD-150536 Google Scholar
  6. 6.
    Heremans E, Nieuwboer A, Spildooren J, Vandenbossche J, Deroost N, Soetens E, Kerckhofs E, Vercruysse S (2013) Cognitive aspects of freezing of gait in Parkinson’s disease: a challenge for rehabilitation. J Neural Transm 120(4):543–557. doi: 10.1007/s00702-012-0964-y CrossRefPubMedGoogle Scholar
  7. 7.
    Burrell JR, Hornberger M, Carpenter RH, Kiernan MC, Hodges JR (2012) Saccadic abnormalities in frontotemporal dementia. Neurology 78(23):1816–1823. doi: 10.1212/WNL.0b013e318258f75c CrossRefPubMedGoogle Scholar
  8. 8.
    Terao Y, Fukuda H, Yugeta A, Hikosaka O, Nomura Y, Segawa M, Hanajima R, Tsuji S, Ugawa Y (2011) Initiation and inhibitory control of saccades with the progression of Parkinson’s disease: changes in three major drives converging on the superior colliculus. Neuropsychologia 49(7):1794–1806. doi: 10.1016/j.neuropsychologia.2011.03.002 CrossRefPubMedGoogle Scholar
  9. 9.
    Munoz DP, Everling S (2004) Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci 5(3):218–228CrossRefPubMedGoogle Scholar
  10. 10.
    Nieman DH, Bour LJ, Linszen DH, Goede J, Koelman JH, Gersons BP, Ongerboer de Visser BW (2000) Neuropsychological and clinical correlates of antisaccade task performance in schizophrenia. Neurology 54(4):866–871CrossRefPubMedGoogle Scholar
  11. 11.
    Munoz DP, Armstrong IT, Hampton KA, Moore KD (2003) Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder. J Neurophysiol 90(1):503–514. doi: 10.1152/jn.00192.2003 CrossRefPubMedGoogle Scholar
  12. 12.
    Guitton D, Buchtel HA, Douglas RM (1985) Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp Brain Res 58(3):455–472CrossRefPubMedGoogle Scholar
  13. 13.
    Anderson TJ, MacAskill MR (2013) Eye movements in patients with neurodegenerative disorders. Nat Rev Neurol 9(2):74–85. doi: 10.1038/nrneurol.2012.273 CrossRefPubMedGoogle Scholar
  14. 14.
    Yerram S, Glazman S, Bodis-Wollner I (2013) Cortical control of saccades in Parkinson disease and essential tremor. J Neural Transm 120(1):145–156. doi: 10.1007/s00702-012-0870-3 CrossRefPubMedGoogle Scholar
  15. 15.
    Rivaud-Pechoux S, Vidailhet M, Brandel JP, Gaymard B (2007) Mixing pro- and antisaccades in patients with parkinsonian syndromes. Brain 130(Pt 1):256–264. doi: 10.1093/brain/awl315 PubMedGoogle Scholar
  16. 16.
    Antoniades CA, Demeyere N, Kennard C, Humphreys GW, Hu MT (2015) Antisaccades and executive dysfunction in early drug-naive Parkinson’s disease: the discovery study. Mov Disord 30(6):843–847. doi: 10.1002/mds.26134 CrossRefPubMedGoogle Scholar
  17. 17.
    Amador SC, Hood AJ, Schiess MC, Izor R, Sereno AB (2006) Dissociating cognitive deficits involved in voluntary eye movement dysfunctions in Parkinson’s disease patients. Neuropsychologia 44(8):1475–1482. doi: 10.1016/j.neuropsychologia.2005.11.015 CrossRefPubMedGoogle Scholar
  18. 18.
    Joti P, Kulashekhar S, Behari M, Murthy A (2007) Impaired inhibitory oculomotor control in patients with Parkinson’s disease. Exp Brain Res 177(4):447–457. doi: 10.1007/s00221-006-0687-0 CrossRefPubMedGoogle Scholar
  19. 19.
    Mosimann UP, Muri RM, Burn DJ, Felblinger J, O’Brien JT, McKeith IG (2005) Saccadic eye movement changes in Parkinson’s disease dementia and dementia with Lewy bodies. Brain 128(Pt 6):1267–1276. doi: 10.1093/brain/awh484 CrossRefPubMedGoogle Scholar
  20. 20.
    Walton CC, Shine JM, Mowszowski L, Gilat M, Hall JM, O’Callaghan C, Naismith SL, Lewis SJ (2015) Impaired cognitive control in Parkinson’s disease patients with freezing of gait in response to cognitive load. J Neural Transm 122(5):653–660. doi: 10.1007/s00702-014-1271-6 CrossRefPubMedGoogle Scholar
  21. 21.
    Vandenbossche J, Deroost N, Soetens E, Zeischka P, Spildooren J, Vercruysse S, Nieuwboer A, Kerckhofs E (2012) Conflict and freezing of gait in Parkinson’s disease: support for a response control deficit. Neuroscience 206:144–154. doi: 10.1016/j.neuroscience.2011.12.048 CrossRefPubMedGoogle Scholar
  22. 22.
    Kostic VS, Agosta F, Pievani M, Stefanova E, Jecmenica-Lukic M, Scarale A, Spica V, Filippi M (2012) Pattern of brain tissue loss associated with freezing of gait in Parkinson disease. Neurology 78(6):409–416. doi: 10.1212/WNL.0b013e318245d23c CrossRefPubMedGoogle Scholar
  23. 23.
    Tessitore A, Amboni M, Cirillo G, Corbo D, Picillo M, Russo A, Vitale C, Santangelo G, Erro R, Cirillo M, Esposito F, Barone P, Tedeschi G (2012) Regional gray matter atrophy in patients with Parkinson disease and freezing of gait. AJNR Am J Neuroradiol 33(9):1804–1809. doi: 10.3174/ajnr.A3066 CrossRefPubMedGoogle Scholar
  24. 24.
    Snijders AH, Leunissen I, Bakker M, Overeem S, Helmich RC, Bloem BR, Toni I (2011) Gait-related cerebral alterations in patients with Parkinson’s disease with freezing of gait. Brain 134(Pt 1):59–72. doi: 10.1093/brain/awq324 CrossRefPubMedGoogle Scholar
  25. 25.
    Herman T, Rosenberg-Katz K, Jacob Y, Giladi N, Hausdorff JM (2014) Gray matter atrophy and freezing of gait in Parkinson’s disease: is the evidence black-on-white? Mov Disord 29(1):134–139. doi: 10.1002/mds.25697 CrossRefPubMedGoogle Scholar
  26. 26.
    Sunwoo MK, Cho KH, Hong JY, Lee JE, Sohn YH, Lee PH (2013) Thalamic volume and related visual recognition are associated with freezing of gait in non-demented patients with Parkinson’s disease. Parkinsonism Relat Disord 19(12):1106–1109. doi: 10.1016/j.parkreldis.2013.07.023 CrossRefPubMedGoogle Scholar
  27. 27.
    Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–184PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, Broe GA, Cummings J, Dickson DW, Gauthier S, Goldman J, Goetz C, Korczyn A, Lees A, Levy R, Litvan I, McKeith I, Olanow W, Poewe W, Quinn N, Sampaio C, Tolosa E, Dubois B (2007) Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 22(12):1689–1707. doi: 10.1002/mds.21507 (quiz 1837) CrossRefPubMedGoogle Scholar
  29. 29.
    Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N, Movement Disorder Society URTF (2008) Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23(15):2129–2170. doi: 10.1002/mds.22340 CrossRefPubMedGoogle Scholar
  30. 30.
    Giladi N, Shabtai H, Simon ES, Biran S, Tal J, Korczyn AD (2000) Construction of freezing of gait questionnaire for patients with Parkinsonism. Parkinsonism Relat Disord 6(3):165–170CrossRefPubMedGoogle Scholar
  31. 31.
    Kitagawa M, Fukushima J, Tashiro K (1994) Relationship between antisaccades and the clinical symptoms in Parkinson’s disease. Neurology 44(12):2285–2289CrossRefPubMedGoogle Scholar
  32. 32.
    Michell AW, Xu Z, Fritz D, Lewis SJ, Foltynie T, Williams-Gray CH, Robbins TW, Carpenter RH, Barker RA (2006) Saccadic latency distributions in Parkinson’s disease and the effects of L-dopa. Exp Brain Res 174(1):7–18. doi: 10.1007/s00221-006-0412-z PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17(5):427–442CrossRefPubMedGoogle Scholar
  34. 34.
    Ober JK, Przedpelska-Ober E, Gryncewicz W, Dylak J, Carpenter RHS, Ober JJ (2003) Hand-held system for ambulatory measurement of saccadic durations of neurological patients. In: Gajda J (ed) Modelling and Measurement in Medicine Komitet Biocybernityki i Inzyneierii Biomedycznej PAN, Warsaw, pp 187–198Google Scholar
  35. 35.
    Carpenter RH, Williams ML (1995) Neural computation of log likelihood in control of saccadic eye movements. Nature 377(6544):59–62. doi: 10.1038/377059a0 CrossRefPubMedGoogle Scholar
  36. 36.
    Burrell JR, Carpenter RH, Hodges JR, Kiernan MC (2013) Early saccades in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 14(4):294–301. doi: 10.3109/21678421.2013.783077 CrossRefPubMedGoogle Scholar
  37. 37.
    Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25(15):2649–2653. doi: 10.1002/mds.23429 CrossRefPubMedGoogle Scholar
  38. 38.
    Beck A, Steer R, Brown G (1996) Manual for the BDI-II. Psychological Corporation, San AntonioGoogle Scholar
  39. 39.
    Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198CrossRefPubMedGoogle Scholar
  40. 40.
    Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H (2005) The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699. doi: 10.1111/j.1532-5415.2005.53221.x CrossRefPubMedGoogle Scholar
  41. 41.
    Reitan RM (1979) Manual for administration of neuropsychological test batteries for adults and children. Neuropsychology Laboratory, Indiana University medical CenterGoogle Scholar
  42. 42.
    Viliūnas V, Lukauskienė R, Švegžda A, Žukauskas A (2006) End-box scoring artefact evaluation of the Farnsworth–Munsell 100-Hue colour vision test. Ophthalmic Physiol Opt 26(6):580–586. doi: 10.1111/j.1475-1313.2006.00411.x CrossRefPubMedGoogle Scholar
  43. 43.
    Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155. doi: 10.1002/hbm.10062 CrossRefPubMedGoogle Scholar
  44. 44.
    Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57. doi: 10.1109/42.906424 CrossRefPubMedGoogle Scholar
  45. 45.
    Andersson JL, Jenkinson M, Smith S (2007) Non-linear optimisation. FMRIB technical report TR07JA1. Practice 2007a JunGoogle Scholar
  46. 46.
    Carpenter RHS (2012) Analysing the detail of saccadic reaction time distributions. Biocybern Biomed Eng 32(2):49–63CrossRefGoogle Scholar
  47. 47.
    Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS (2012) Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci 12(2):241–268. doi: 10.3758/s13415-011-0083-5 PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Aron AR, Robbins TW, Poldrack RA (2014) Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci 18(4):177–185. doi: 10.1016/j.tics.2013.12.003 CrossRefPubMedGoogle Scholar
  49. 49.
    Matsuda T, Matsuura M, Ohkubo T, Ohkubo H, Matsushima E, Inoue K, Taira M, Kojima T (2004) Functional MRI mapping of brain activation during visually guided saccades and antisaccades: cortical and subcortical networks. Psychiatry Res 131(2):147–155. doi: 10.1016/j.pscychresns.2003.12.007 CrossRefPubMedGoogle Scholar
  50. 50.
    Ettinger U, Ffytche DH, Kumari V, Kathmann N, Reuter B, Zelaya F, Williams SC (2008) Decomposing the neural correlates of antisaccade eye movements using event-related FMRI. Cereb Cortex 18(5):1148–1159. doi: 10.1093/cercor/bhm147 CrossRefPubMedGoogle Scholar
  51. 51.
    Shine JM, Matar E, Ward PB, Frank MJ, Moustafa AA, Pearson M, Naismith SL, Lewis SJ (2013) Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain 136(Pt 12):3671–3681. doi: 10.1093/brain/awt272 CrossRefPubMedGoogle Scholar
  52. 52.
    Shen K, Hutchison RM, Bezgin G, Everling S, McIntosh AR (2015) Network structure shapes spontaneous functional connectivity dynamics. J Neurosci 35(14):5579–5588. doi: 10.1523/JNEUROSCI.4903-14.2015 CrossRefPubMedGoogle Scholar
  53. 53.
    Walton CC, Shine JM, Mowszowski L, Naismith SL, Lewis SJ (2014) Freezing of gait in Parkinson’s disease: current treatments and the potential role for cognitive training. Restor Neurol Neurosci 32(3):411–422. doi: 10.3233/RNN-130370 PubMedGoogle Scholar
  54. 54.
    Leung IHK, Walton CC, Hallock H, Lewis SJG, Valenzuela M, Lampit A (2015) Cognitive training in Parkinson’s disease: a systematic review and meta-analysis. Neurology. doi: 10.1212/WNL.0000000000002145
  55. 55.
    Lee SY, Kim MS, Chang WH, Cho JW, Youn JY, Kim YH (2014) Effects of repetitive transcranial magnetic stimulation on freezing of gait in patients with Parkinsonism. Restor Neurol Neurosci 32(6):743–753. doi: 10.3233/RNN-140397 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Courtney C. Walton
    • 1
  • Claire O’Callaghan
    • 1
    • 2
  • Julie M. Hall
    • 1
    • 3
  • Moran Gilat
    • 1
  • Loren Mowszowski
    • 1
    • 4
  • Sharon L. Naismith
    • 1
    • 4
  • James R. Burrell
    • 5
  • James M. Shine
    • 5
    • 6
  • Simon J. G. Lewis
    • 1
    Email author
  1. 1.Parkinson’s Disease Research Clinic, Brain and Mind CentreUniversity of SydneyCamperdownAustralia
  2. 2.Behavioural and Clinical Neuroscience InstituteUniversity of CambridgeCambridgeUK
  3. 3.School of Social Sciences and PsychologyWestern Sydney UniversityParramattaAustralia
  4. 4.Healthy Brain Ageing Program, School of Psychology; Brain and Mind Centre & The Charles Perkins CentreUniversity of SydneySydneyAustralia
  5. 5.Neuroscience Research AustraliaUniversity of New South WalesSydneyAustralia
  6. 6.School of PsychologyStanford UniversityStanfordUSA

Personalised recommendations