Advertisement

Journal of Neurology

, Volume 262, Issue 10, pp 2373–2381 | Cite as

A patient with PMP22-related hereditary neuropathy and DBH-gene-related dysautonomia

  • Anna Bartoletti-Stella
  • Giacomo Chiaro
  • Giovanna Calandra-Buonaura
  • Manuela Contin
  • Cesa Scaglione
  • Giorgio Barletta
  • Annagrazia Cecere
  • Paolo Garagnani
  • Paolo Tieri
  • Alberto Ferrarini
  • Silvia Piras
  • Claudio Franceschi
  • Massimo Delledonne
  • Pietro CortelliEmail author
  • Sabina CapellariEmail author
Short Commentary

Abstract

Recurrent focal neuropathy with liability to pressure palsies is a relatively frequent autosomal-dominant demyelinating neuropathy linked to peripheral myelin protein 22 (PMP22) gene deletions. The combination of PMP22 gene mutations with other genetic variants is known to cause a more severe phenotype than expected. We present the case of a patient with severe orthostatic hypotension since 12 years of age, who inherited a PMP22 gene deletion from his father. Genetic double trouble was suspected because of selective sympathetic autonomic disturbances. Through exome-sequencing analysis, we identified two novel mutations in the dopamine beta hydroxylase gene. Moreover, with interactome analysis, we excluded a further influence on the origin of the disease by variants in other genes. This case increases the number of unique patients presenting with dopamine-β-hydroxylase deficiency and of cases with genetically proven double trouble. Finding the right, complete diagnosis is crucial to obtain adequate medical care and appropriate genetic counseling.

Keywords

Recurrent focal neuropathy with liability to pressure palsies Dopamine-β-hydroxylase deficiency Exome sequencing, dysautonomia 

Notes

Acknowledgments

We are grateful to the patient and his family members for their participation in the study. This project was supported by University of Bologna, RFO 2012 to P.C.

Compliance with ethical standards

Conflicts of interest

The authors report no conflict of interests.

Supplementary material

415_2015_7896_MOESM1_ESM.docx (91 kb)
Supplementary material 1 (DOCX 91 kb)
415_2015_7896_MOESM2_ESM.docx (28 kb)
Supplementary material 2 (DOCX 28 kb)
415_2015_7896_MOESM3_ESM.docx (31 kb)
Supplementary material 3 (DOCX 30 kb)

References

  1. 1.
    Chance PF (1999) Overview of hereditary neuropathy with liability to pressure palsies. Ann N Y Acad Sci 883:14–21CrossRefPubMedGoogle Scholar
  2. 2.
    Li J, Parker B, Martyn C, Natarajan C, Guo J (2013) The PMP22 gene and its related diseases. Mol Neurobiol 47:673–698PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Senard JM, Rouet P (2006) Dopamine beta-hydroxylase deficiency. Orphanet J Rare Dis 1:7PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Robertson D, Garland EM, Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K (1993) Dopamine beta-hydroxylase deficiency. In: Seattle, WA (ed) Genereviews, University of Washington, Seattle. Initial Posting: September 4, 2003; Last Update: January 24, 2013Google Scholar
  5. 5.
    Man in ‘t Veld A, Boomsma F, Moleman P, Schalekamp MA (1987) Congenital dopamine-beta-hydroxylase deficiency. A novel orthostatic syndrome. Lancet 1:183–188PubMedGoogle Scholar
  6. 6.
    Man in ‘t Veld A, Boomsma F, Lenders J, vd meiracker A, Julien C, Tulen J, Moleman P, Thien T, Lamberts S, Schalekamp M (1988) Patients with congenital dopamine beta-hydroxylase deficiency. A lesson in catecholamine physiology. Am J Hypertens 1:231–238CrossRefPubMedGoogle Scholar
  7. 7.
    Biaggioni I, Goldstein DS, Atkinson T, Robertson D (1990) Dopamine-beta-hydroxylase deficiency in humans. Neurology 40:370–373CrossRefPubMedGoogle Scholar
  8. 8.
    Mathias CJ, Bannister RB, Cortelli P, Heslop K, Polak JM, Raimbach S, Springall DR, Watson L (1990) Clinical, autonomic and therapeutic observations in two siblings with postural hypotension and sympathetic failure due to an inability to synthesize noradrenaline from dopamine because of a deficiency of dopamine beta hydroxylase. Q J Med 75:617–633PubMedGoogle Scholar
  9. 9.
    Gentric A, Fouilhoux A, Caroff M, Mottier D, Jouquan J (1994) Dopamine B hydroxylase deficiency responsible for severe dysautonomic orthostatic hypotension in an elderly patient: clinical experience. J Age Relat Disord 6:7–8Google Scholar
  10. 10.
    Thompson JM, O’Callaghan CJ, Kingwell BA, Lambert GW, Jennings GL, Esler MD (1995) Total norepinephrine spillover, muscle sympathetic nerve activity and heart-rate spectral analysis in a patient with dopamine beta-hydroxylase deficiency. J Auton Nerv Syst 55:198–206CrossRefPubMedGoogle Scholar
  11. 11.
    Scurrah NJ, Ross AW, Solly M (2002) Peripartum management of a patient with dopamine beta-hydroxylase deficiency, a rare congenital cause of dysautonomia. Anaesth Intensive Care 30:484–486PubMedGoogle Scholar
  12. 12.
    Kim CH, Zabetian CP, Cubells JF, Cho S, Biaggioni I, Cohen BM, Robertson D, Kim KS (2002) Mutations in the dopamine beta-hydroxylase gene are associated with human norepinephrine deficiency. Am J Med Genet 108:140–147CrossRefPubMedGoogle Scholar
  13. 13.
    Garland EM, Raj SR, Demartinis N, Robertson D (2005) Case report: marathon runner with severe autonomic failure. Lancet 366:S13CrossRefPubMedGoogle Scholar
  14. 14.
    Deinum J, Steenbergen-Spanjers GC, Jansen M, Boomsma F, Lenders JW, van Ittersum FJ, Hück N, van den Heuvel LP, Wevers RA (2004) DBH gene variants that cause low plasma dopamine beta hydroxylase with or without a severe orthostatic syndrome. J Med Genet 41:e38PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Cheshire WP Jr, Dickson DW, Nahm KF, Kaufmann HC, Benarroch EE (2006) Dopamine beta-hydroxylase deficiency involves the central autonomic network. Acta Neuropathol 112:227–229CrossRefPubMedGoogle Scholar
  16. 16.
    Erez A, Li J, Geraghty MT, Ben-Shachar S, Cooper ML, Mensing DE, Vonalt KD, Ou Z, Pursley AN, Chinault AC, Patel A, Cheung SW, Sahoo T (2010) Mosaic deletion 11p13 in a child with dopamine beta-hydroxylase deficiency-case report and review of the literature. Am J Med Genet A 152A:732–736CrossRefPubMedGoogle Scholar
  17. 17.
    Despas F, Pathak A, Berry M, Cagnac R, Massabuau P, Liozon E, Galinier M, Senard JM (2010) DBH deficiency in an elderly patient: efficacy and safety of chronic droxidopa. Clin Auton Res 20:205–207CrossRefPubMedGoogle Scholar
  18. 18.
    Kim CH, Leung A, Huh YH, Yang E, Kim DJ, Leblanc P, Ryu H, Kim K, Kim DW, Garland EM, Raj SR, Biaggioni I, Robertson D, Kim KS (2011) Norepinephrine deficiency is caused by combined abnormal mRNA processing and defective protein trafficking of dopamine beta-hydroxylase. J Biol Chem 286:9196–9204PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Phillips L, Robertson D, Melson MR, Garland EM, Joos KM (2013) Pediatric ptosis as a sign of treatable autonomic dysfunction. Am J Ophthalmol 156:370–374PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Guaraldi P, Donadio V, Capellari S, Contin M, Casadio MC, Montagna P, Liguori R, Cortelli P (2011) Isolated noradrenergic failure in adult-onset autosomal dominant leukodystrophy. Auton Neurosci 159:123–126CrossRefPubMedGoogle Scholar
  21. 21.
    Desmet FO, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C (2009) Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucl Acids Res 37:e67PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Yeo G, Burge CB (2004) Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol 11:377–394CrossRefPubMedGoogle Scholar
  23. 23.
    Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081CrossRefPubMedGoogle Scholar
  24. 24.
    Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Schwarz JM, Rödelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7:575–576CrossRefPubMedGoogle Scholar
  26. 26.
    Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein mutations: application to cancer genomics. Nucl Acids Res 39:e118PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, Day IN, Gaunt TR (2013) Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 34:57–65PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Benarroch EE (2013) Monoamine transporters: structure, regulation, and clinical implications. Neurology 81:761–768CrossRefPubMedGoogle Scholar
  29. 29.
    Hodapp JA, Carter GT, Lipe HP, Michelson SJ, Kraft GH, Bird TD (2006) Double trouble in hereditary neuropathy: concomitant mutations in the PMP-22 gene and another gene produce novel phenotypes. Arch Neurol 63:112–117CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Anna Bartoletti-Stella
    • 1
  • Giacomo Chiaro
    • 1
  • Giovanna Calandra-Buonaura
    • 1
    • 2
  • Manuela Contin
    • 1
    • 2
  • Cesa Scaglione
    • 2
  • Giorgio Barletta
    • 1
    • 2
  • Annagrazia Cecere
    • 2
  • Paolo Garagnani
    • 3
    • 4
    • 5
  • Paolo Tieri
    • 6
  • Alberto Ferrarini
    • 7
  • Silvia Piras
    • 2
  • Claudio Franceschi
    • 2
    • 4
  • Massimo Delledonne
    • 7
  • Pietro Cortelli
    • 1
    • 2
    Email author
  • Sabina Capellari
    • 1
    • 2
    Email author
  1. 1.Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum University of BolognaBolognaItaly
  2. 2.UOC Clinica NeurologicaIRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
  3. 3.Interdepartmental Centre “L. Galvani” (CIG)Alma Mater Studiorum University of BolognaBolognaItaly
  4. 4.Department of Experimental, Diagnostic and Specialty Medicine Experimental PathologyAlma Mater Studiorum University of BolognaBolognaItaly
  5. 5.Center for Applied Biomedical ResearchSt. Orsola-Malpighi University HospitalBolognaItaly
  6. 6.CNR Consiglio Nazionale delle RicercheIAC Istituto per le Applicazioni del Calcolo “Mauro Picone”RomeItaly
  7. 7.Department of BiotechnologiesUniversity of VeronaVeronaItaly

Personalised recommendations