Advertisement

Journal of Neurology

, Volume 262, Issue 10, pp 2336–2345 | Cite as

A multimodal neuroimaging study of a case of crossed nonfluent/agrammatic primary progressive aphasia

  • Edoardo G. Spinelli
  • Francesca Caso
  • Federica Agosta
  • Giuseppe Gambina
  • Giuseppe Magnani
  • Elisa Canu
  • Valeria Blasi
  • Daniela Perani
  • Giancarlo Comi
  • Andrea Falini
  • Maria Luisa Gorno-Tempini
  • Massimo FilippiEmail author
Original Communication

Abstract

Crossed aphasia has been reported mainly as post-stroke aphasia resulting from brain damage ipsilateral to the dominant right hand. Here, we described a case of a crossed nonfluent/agrammatic primary progressive aphasia (nfvPPA), who developed a corticobasal syndrome (CBS). We collected clinical, cognitive, and neuroimaging data for four consecutive years from a 55-year-old right-handed lady (JV) presenting with speech disturbances. 18-fluorodeoxyglucose positron emission tomography (18F-FDG PET) and DaT-scan with 123I-Ioflupane were obtained. Functional MRI (fMRI) during a verb naming task was acquired to characterize patterns of language lateralization. Diffusion tensor MRI was used to evaluate white matter damage within the language network. At onset, JV presented with prominent speech output impairment and right frontal atrophy. After 3 years, language deficits worsened, with the occurrence of a mild agrammatism. The patient also developed a left-sided mild extrapyramidal bradykinetic-rigid syndrome. The clinical picture was suggestive of nfvPPA with mild left-sided extrapyramidal syndrome. At this time, voxel-wise SPM analyses of 18F-FDG PET and structural MRI showed right greater than left frontal hypometabolism and damage, which included the Broca’s area. DaT-scan showed a reduced uptake in the right striatum. FMRI during naming task demonstrated bilateral language activations, and tractography showed right superior longitudinal fasciculus (SLF) involvement. Over the following year, JV became mute and developed frank left-sided motor signs and symptoms, evolving into a CBS clinical picture. Brain atrophy worsened in frontal areas bilaterally, and extended to temporo-parietal regions, still with a right-sided asymmetry. Tractography showed an extension of damage to the left SLF and right inferior longitudinal fasciculus. We report a case of crossed nfvPPA followed longitudinally and studied with advanced neuroimaging techniques. The results highlight a complex interaction between individual premorbid developmental differences and the clinical phenotype.

Keywords

Crossed aphasia Nonfluent/agrammatic primary progressive aphasia (nfvPPA) Functional MRI 18-Fluorodeoxyglucose positron emission tomography (18F-FDG PET) Diffusion tensor tractography Corticobasal syndrome (CBS) 

Notes

Acknowledgments

This study was partially supported by a grant from the Italian Ministry of Health (Grant#GR-2010-2303035).

Compliance with the ethical standards

Ethical standard statement

Approval was obtained from the local ethical standards committee on human experimentation and written informed consent from all subjects before enrolment. The study has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Conflicts of interest

EG. Spinelli, F. Caso, G. Gambina, G. Magnani, E. Canu, V. Blasi, D. Perani, A. Falini, and M.L. Gorno-Tempini report no disclosures.

F. Agosta serves on the editorial board of the Journal of Neurology; has received speaker honoraria from Biogen Idec and EXCEMED– Excellence in Medical Education; and receives research supports from the Italian Ministry of Health, and AriSLA (Fondazione Italiana di Ricerca per la SLA).

G. Comi has received compensation for consulting services and/or speaking activities from Novartis, Teva Pharmaceutical Ind., Sanofi, Genzyme, Merck Serono, Biogen, Bayer, Actelion, Serono Symposia International Foundation, Almirall, Chugai and Receptos.

M. Filippi is Editor-in-Chief of the Journal of Neurology; serves on scientific advisory boards for Teva Pharmaceutical Industries; has received compensation for consulting services and/or speaking activities from Bayer Schering Pharma, Biogen Idec, Merck Serono, Novartis, and Teva Pharmaceutical Industries; and receives research support from Bayer Schering Pharma, Biogen Idec, Merck Serono, Teva Pharmaceutical Industries, Novartis, Italian Ministry of Health, Fondazione Italiana Sclerosi Multipla, Cure PSP, Alzheimer’s Drug Discovery Foundation (ADDF), the Jacques and Gloria Gossweiler Foundation (Switzerland), and ARiSLA (Fondazione Italiana di Ricerca per la SLA).

Supplementary material

415_2015_7845_MOESM1_ESM.doc (96 kb)
Supplementary material 1 (DOC 96 kb)

References

  1. 1.
    Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, Ogar JM, Rohrer JD, Black S, Boeve BF, Manes F, Dronkers NF, Vandenberghe R, Rascovsky K, Patterson K, Miller BL, Knopman DS, Hodges JR, Mesulam MM, Grossman M (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    McMonagle P, Blair M, Kertesz A (2006) Corticobasal degeneration and progressive aphasia. Neurology 67:1444–1451CrossRefPubMedGoogle Scholar
  3. 3.
    Caso F, Mandelli ML, Henry M, Gesierich B, Bettcher BM, Ogar J, Filippi M, Comi G, Magnani G, Sidhu M, Trojanowski JQ, Huang EJ, Grinberg LT, Miller BL, Dronkers N, Seeley WW, Gorno-Tempini ML (2014) In vivo signatures of nonfluent/agrammatic primary progressive aphasia caused by FTLD pathology. Neurology 82:239–247PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Bramwell B (1899) On “crossed” aphasia and the factors which go to determine whether the “leading” or “driving” speech-centers shall be located in the left or in the right hemisphere of the brain: With notes of a case of “crossed” aphasia (aphasia with right-sided hemiplegia) in a left-handed man. Lancet 153:1473–1479CrossRefGoogle Scholar
  5. 5.
    Cappa SF, Perani D, Bressi S, Paulesu E, Franceschi M, Fazio F (1993) Crossed aphasia: a PET follow up study of two cases. J Neurol Neurosurg Psychiatry 56:665–671PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Repetto C, Manenti R, Cotelli M, Calabria M, Zanetti O, Borroni B, Padovani A, Miniussi C (2007) Right hemisphere involvement in non-fluent primary progressive aphasia. Behav Neurol 18:239–243CrossRefPubMedGoogle Scholar
  7. 7.
    Assal F, Laganaro M, Remund CD, Ragno Paquier C (2012) Progressive crossed-apraxia of speech as a first manifestation of a probable corticobasal degeneration. Behav Neurol 25:285–289CrossRefPubMedGoogle Scholar
  8. 8.
    Jeong EH, Lee YJ, Kwon M, Kim JS, Na DL, Lee JH (2014) Agrammatic primary progressive aphasia in two dextral patients with right hemispheric involvement. Neurocase 20:46–52CrossRefPubMedGoogle Scholar
  9. 9.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMedGoogle Scholar
  10. 10.
    Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851CrossRefPubMedGoogle Scholar
  11. 11.
    Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113CrossRefPubMedGoogle Scholar
  12. 12.
    Salmond CH, Ashburner J, Vargha-Khadem F, Connelly A, Gadian DG, Friston KJ (2002) Distributional assumptions in voxel-based morphometry. Neuroimage 17:1027–1030CrossRefPubMedGoogle Scholar
  13. 13.
    Perani D, Della Rosa PA, Cerami C, Gallivanone F, Fallanca F, Vanoli EG, Panzacchi A, Nobili F, Pappata S, Marcone A, Garibotto V, Castiglioni I, Magnani G, Cappa SF, Gianolli L, Consortium E-P (2014) Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting. NeuroImage Clin 6:445–454PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Della Rosa PA, Cerami C, Gallivanone F, Prestia A, Caroli A, Castiglioni I, Gilardi MC, Frisoni G, Friston K, Ashburner J, Perani D, Consortium E-P (2014) A Standardized [(18)F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics 12:575–593CrossRefPubMedGoogle Scholar
  15. 15.
    Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34:144–155CrossRefPubMedGoogle Scholar
  16. 16.
    Crawford JR, Garthwaite PH (2004) Statistical methods for single-case studies in neuropsychology: comparing the slope of a patient’s regression line with those of a control sample. Cortex 40:533–548CrossRefPubMedGoogle Scholar
  17. 17.
    Gorno-Tempini ML, Murray RC, Rankin KP, Weiner MW, Miller BL (2004) Clinical, cognitive and anatomical evolution from nonfluent progressive aphasia to corticobasal syndrome: a case report. Neurocase 10:426–436PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Sanchez-Valle R, Forman MS, Miller BL, Gorno-Tempini ML (2006) From progressive nonfluent aphasia to corticobasal syndrome: a case report of corticobasal degeneration. Neurocase 12:355–359CrossRefPubMedGoogle Scholar
  19. 19.
    Josephs KA, Duffy JR, Strand EA, Whitwell JL, Layton KF, Parisi JE, Hauser MF, Witte RJ, Boeve BF, Knopman DS, Dickson DW, Jack CR Jr, Petersen RC (2006) Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 129:1385–1398PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Grossman M (2012) The non-fluent/agrammatic variant of primary progressive aphasia. Lancet Neurol 11:545–555PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Cilia R, Rossi C, Frosini D, Volterrani D, Siri C, Pagni C, Benti R, Pezzoli G, Bonuccelli U, Antonini A, Ceravolo R (2011) Dopamine Transporter SPECT Imaging in Corticobasal Syndrome. PLoS One 6:e18301PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M, Agosta F, Dronkers NF, Henry RG, Ogar JM, Miller BL, Gorno-Tempini ML (2011) White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain 134:3011–3029PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Agosta F, Canu E, Sarro L, Comi G, Filippi M (2012) Neuroimaging findings in frontotemporal lobar degeneration spectrum of disorders. Cortex 48:389–413CrossRefPubMedGoogle Scholar
  24. 24.
    Schwindt GC, Graham NL, Rochon E, Tang-Wai DF, Lobaugh NJ, Chow TW, Black SE (2013) Whole-brain white matter disruption in semantic and nonfluent variants of primary progressive aphasia. Hum Brain Mapp 34:973–984CrossRefPubMedGoogle Scholar
  25. 25.
    Coppens P, Hungerford S, Yamaguchi S, Yamadori A (2002) Crossed aphasia: an analysis of the symptoms, their frequency, and a comparison with left-hemisphere aphasia symptomatology. Brain Lang 83:425–463CrossRefPubMedGoogle Scholar
  26. 26.
    Vikingstad EM, George KP, Johnson AF, Cao Y (2000) Cortical language lateralization in right handed normal subjects using functional magnetic resonance imaging. J Neurol Sci 175:17–27CrossRefPubMedGoogle Scholar
  27. 27.
    Petrovich Brennan NM, Whalen S, de Morales Branco D, O’Shea JP, Norton IH, Golby AJ (2007) Object naming is a more sensitive measure of speech localization than number counting: converging evidence from direct cortical stimulation and fMRI. Neuroimage 37(Suppl 1):S100–S108CrossRefPubMedGoogle Scholar
  28. 28.
    Ojemann GA (1991) Cortical organization of language. J Neurosci 11:2281–2287PubMedGoogle Scholar
  29. 29.
    Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, Bertram L, Mullin K, Tanzi RE, Blacker D, Albert MS, Sperling RA (2005) Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65:404–411PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Hickok G, Poeppel D (2004) Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92:67–99CrossRefPubMedGoogle Scholar
  31. 31.
    Wilson SM, Dronkers NF, Ogar JM, Jang J, Growdon ME, Agosta F, Henry ML, Miller BL, Gorno-Tempini ML (2010) Neural correlates of syntactic processing in the nonfluent variant of primary progressive aphasia. J Neurosci 30:16845–16854PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Lindell AK (2006) In your right mind: right hemisphere contributions to language processing and production. Neuropsychol Rev 16:131–148CrossRefPubMedGoogle Scholar
  33. 33.
    Wyllie E, Luders H, Murphy D, Morris H 3rd, Dinner D, Lesser R, Godoy J, Kotagal P, Kanner A (1990) Intracarotid amobarbital (Wada) test for language dominance: correlation with results of cortical stimulation. Epilepsia 31:156–161CrossRefPubMedGoogle Scholar
  34. 34.
    Kurthen M, Helmstaedter C, Linke DB, Hufnagel A, Elger CE, Schramm J (1994) Quantitative and qualitative evaluation of patterns of cerebral language dominance. An amobarbital study. Brain Lang 46:536–564CrossRefPubMedGoogle Scholar
  35. 35.
    Binder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M, Benbadis S, Frost JA, Rao SM, Haughton VM (1996) Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46:978–984CrossRefPubMedGoogle Scholar
  36. 36.
    Rogalski E, Johnson N, Weintraub S, Mesulam M (2008) Increased frequency of learning disability in patients with primary progressive aphasia and their first-degree relatives. Arch Neurol 65:244–248PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Miller ZA, Mandelli ML, Rankin KP, Henry ML, Babiak MC, Frazier DT, Lobach IV, Bettcher BM, Wu TQ, Rabinovici GD, Graff-Radford NR, Miller BL, Gorno-Tempini ML (2013) Handedness and language learning disability differentially distribute in progressive aphasia variants. Brain 136:3461–3473PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Miller ZA, Hinkley LB, Herman A, Honma S, Findlay A, Block N, Ketelle R, Rabinovici G, Rosen H, Nagarajan SS, Miller BL, Gorno-Tempini ML (2015) Anomalous functional language lateralization in semantic variant PPA. Neurology 84:204–206CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Edoardo G. Spinelli
    • 1
    • 2
  • Francesca Caso
    • 1
  • Federica Agosta
    • 1
  • Giuseppe Gambina
    • 5
  • Giuseppe Magnani
    • 2
  • Elisa Canu
    • 1
  • Valeria Blasi
    • 3
  • Daniela Perani
    • 4
  • Giancarlo Comi
    • 2
  • Andrea Falini
    • 3
  • Maria Luisa Gorno-Tempini
    • 6
  • Massimo Filippi
    • 1
    • 2
    Email author
  1. 1.Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceSan Raffaele Scientific Institute, Vita-Salute San Raffaele UniversityMilanItaly
  2. 2.Department of Neurology, Institute of Experimental Neurology, Division of NeuroscienceSan Raffaele Scientific Institute, Vita-Salute San Raffaele UniversityMilanItaly
  3. 3.Department of Neuroradiology and CERMAC, Division of NeuroscienceSan Raffaele Scientific Institute, Vita-Salute San Raffaele UniversityMilanItaly
  4. 4.Nuclear Medicine Unit, Division of NeuroscienceSan Raffaele Scientific Institute, Vita-Salute San Raffaele UniversityMilanItaly
  5. 5.SSO Centro Alzheimer e Disturbi Cognitivi, DAI di Neuroscienze, UOC di Neurologia d.O.Azienda Ospedaliera Integrata VeronaVeronaItaly
  6. 6.Memory and Aging CenterUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations