Journal of Neurology

, Volume 262, Issue 7, pp 1706–1713 | Cite as

Walking function in clinical monitoring of multiple sclerosis by telemedicine

  • Núria Sola-Valls
  • Yolanda Blanco
  • Maria Sepúlveda
  • Sara Llufriu
  • Elena H. Martínez-Lapiscina
  • Delon La Puma
  • Francesc Graus
  • Pablo Villoslada
  • Albert Saiz
Original Communication

Abstract

Walking limitation is a key component of disability in patients with multiple sclerosis (MS), but the information on daily walking activity and disability over time is limited. To determine, (1) the agreement between the standard measurements of MS-related disability [expanded disability status scale (EDSS), functional systems (FS) and ambulation index (AI)] obtained by conventional and remote evaluation using a multimedia platform; (2) the usefulness of monitoring 6-min walk test (6MWT) and average daily walking activity (aDWA) to better characterize patients disability. Twenty-five patients (EDSS score 1.0–6.5) were evaluated every 3 months for the first year, and aDWA repeated at year 2. Remote visits included the recording of a video with self-performed neurological examination and specific multimedia questionnaires. aDWA was measured by a triaxial accelerometer. All but two patients completed the study. Modest agreement between conventional and multimedia EDSS was found for EDSS ≤ 4.0 (kappa = 0.2) and good for EDSS ≥ 4.5 (kappa = 0.6). For the overall sample, pyramidal, cerebellar and brainstem FS showed the greatest agreement (kappa = 0.7). SR-AI showed a modest agreement for EDSS ≤ 4.0 and good for EDSS ≥ 4.5 (kappa = 0.3 and 0.6, respectively). There was a strong correlation between conventional and 6MWT measured by accelerometer (r = 0.76). The aDWA correlated strongly with the EDSS (r = −0.86) and a cut-off point of 3279.3 steps/day discriminated patients with ambulatory impairment. There was a significant decline in aDWA over 2 years in patients with ambulatory impairment that were not observed by standard measurements of disability. MS clinical monitoring by telemedicine is feasible, but the observed lower agreement in less disabled patients emphasizes the need to optimize the assessment methodology. Accelerometers capture changes that may indicate deterioration over time.

Keywords

Multiple sclerosis Telemedicine Disability progression Accelerometer Daily walking activity 

References

  1. 1.
    Porter B, Thompson A (2012) Connecting to the future––the promise of telecare. Mult Scler 18:384–386. doi:10.1177/1352458512441273 CrossRefPubMedGoogle Scholar
  2. 2.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). Neurology 33:1444–1452CrossRefPubMedGoogle Scholar
  3. 3.
    Meyer-Moock S, Feng YS, Maeurer M, Dippel FW, Kohlmann T (2014) Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the multiple sclerosis functional composite (MSFC) in patients with multiple sclerosis. BMC Neurol 14:58. doi:10.1186/1471-2377-14-58 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Polman CH, Rudick RA (2010) The multiple sclerosis functional composite: a clinically meaningful measure of disability. Neurology 74(Suppl 3):S8–S15. doi:10.1212/WNL.0b013e3181dbb571 CrossRefPubMedGoogle Scholar
  5. 5.
    Larocca NG (2011) Impact of walking impairment in multiple sclerosis: perspectives of patients and care partners. Patient 4:189–201. doi:10.2165/11591150-000000000-00000 CrossRefPubMedGoogle Scholar
  6. 6.
    Motl RW, Snook EM, Agiovlasitis S (2011) Does an accelerometer accurately measure steps taken under controlled conditions in adults with mild multiple sclerosis? Disabil Health J 4:52–57. doi:10.1016/j.dhjo.2010.02.003 CrossRefPubMedGoogle Scholar
  7. 7.
    Motl RW, Pilutti LA, Learmonth YC, Goldman MD, Brown T (2013) Clinical importance of steps taken per day among persons with multiple sclerosis. PLoS One 8:e73247. doi:10.1371/journal.pone.0073247 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302. doi:10.1002/ana.22366 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Fischer JS, Rudick RA, Cutter GR, Reingold SC (1999) The multiple sclerosis functional composite measure (MSFC): an integrated approach to MS clinical outcome assessment. National MS Society Clinical Outcomes Assessment Task Force. Mult Scler 5:244–250CrossRefPubMedGoogle Scholar
  10. 10.
    Goldman MD, Marrie RA, Cohen JA (2008) Evaluation of the 6-min walk in multiple sclerosis subjects and healthy controls. Mult Scler 14:383–390CrossRefPubMedGoogle Scholar
  11. 11.
    Kappos L (2011) Neurostatus training. http://www.neurostatus.net/training/index.php. Accessed 26 June 2012
  12. 12.
    Fernández O, Fernández V, Baumstarck-Barrau K, Muñoz L, Gonzalez Alvarez Mdel M, Arrabal JC, León A, Alonso A, López-Madrona JC, Bustamante R, Luque G, Guerrero M, di Cantogno EV, Auquier P, MusiQoL study group of Spain (2011) Validation of the spanish version of the Multiple Sclerosis International Quality of Life (Musiqol) questionnaire. BMC Neurol 11:127. doi:10.1186/1471-2377-11-127 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Lechner-Scott J, Kappos L, Hofman M, Polman CH, Ronner H, Montalban X, Tintore M, Frontoni M, Buttinelli C, Amato MP, Bartolozzi ML, Versavel M, Dahlke F, Kapp JF, Gibberd R (2003) Can the Expanded Disability Status Scale be assessed by telephone? Mult Scler 9:154–159CrossRefPubMedGoogle Scholar
  14. 14.
    EuroQol Group (1990) EuroQol—a new facility for the measurement of health-related quality of life. Health Policy 16:199–208CrossRefGoogle Scholar
  15. 15.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMedGoogle Scholar
  16. 16.
    Motl RW, Pilutti L, Sandroff BM, Dlugonski D, Sosnoff JJ, Pula JH (2013) Accelerometry as a measure of walking behavior in multiple sclerosis. Acta Neurol Scand 127:384–390. doi:10.1111/ane.12036 CrossRefPubMedGoogle Scholar
  17. 17.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefPubMedGoogle Scholar
  18. 18.
    Dancey C, Reidy J (2004) Statistics without maths for psychology: using SPSS for windows, 5th edn. Prentice Hall, London, pp 168–212Google Scholar
  19. 19.
    Goodkin DE (1991) EDSS reliability. Neurology 41:332CrossRefPubMedGoogle Scholar
  20. 20.
    Rudick RA, Polman CH, Cohen JA, Walton MK, Miller AE, Confavreux C, Lublin FD, Hutchinson M, O’Connor PW, Schwid SR, Balcer LJ, Lynn F, Panzara MA, Sandrock AW (2009) Assessing disability progression with the multiple sclerosis functional composite. Mult Scler 15:984–997. doi:10.1177/1352458509106212 CrossRefPubMedGoogle Scholar
  21. 21.
    Amato MP, Fratiglioni L, Groppi C, Siracusa G, Amaducci L (1988) Interrater reliability in assessing functional systems and disability on the Kurtzke Scale in multiple sclerosis. Arch Neurol 45:746–748CrossRefPubMedGoogle Scholar
  22. 22.
    Francis DA, Bain P, Swan AV, Hughes RA (1991) An assessment of disability rating scales used in multiple sclerosis. Arch Neurol 48:299–301CrossRefPubMedGoogle Scholar
  23. 23.
    Verdier-Taillefer MH, Zuber M, Lyon-Caen O, Clanet M, Gout O, Louis C, Alpérovitch A (1991) Observer disagreement in rating neurologic impairment in multiple sclerosis: facts and consequences. Eur Neurol 31:117–119CrossRefPubMedGoogle Scholar
  24. 24.
    Noseworthy JH, Vandervoort MK, Wong CJ, Ebers GC (1990) Interrater variability with the Expanded Disability Status Scale (EDSS) and functional systems (FS) in a multiple sclerosis clinical trial. The Canadian Cooperation MS Study Group. Neurology 40:971–975CrossRefPubMedGoogle Scholar
  25. 25.
    Sharrack B, Hughes RA, Soudain S, Dunn G (1999) The psychometric properties of clinical rating scales used in multiple sclerosis. Brain 122(Pt 1):141–159CrossRefPubMedGoogle Scholar
  26. 26.
    Hobart J, Freeman J, Thompson A (2000) Kurtzke Scales revisited: the application of psychometric methods to clinical intuition. Brain 123(Pt 5):1027–1040CrossRefPubMedGoogle Scholar
  27. 27.
    Sharrack B, Hughes RA (1997) Reliability of distance estimation by doctors and patients: cross sectional study. BMJ 315:1652–1654PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Gijbels D, Alders G, Van Hoof E, Charlier C, Roelants M, Broekmans T, Eijnde BO, Feys P (2010) Predicting habitual walking performance in multiple sclerosis: relevance of capacity and self-report measures. Mult Scler 16:618–626. doi:10.1177/1352458510361357 CrossRefPubMedGoogle Scholar
  29. 29.
    Motl RW, Dlugonski D, Suh Y, Weikert M, Fernhall B, Goldman M (2010) Accelerometry and its association with objective markers of walking limitations in ambulatory adults with multiple sclerosis. Arch Phys Med Rehabil 91:1942–1947. doi:10.1016/j.apmr.2010.08.011 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Dlugonski D, Pilutti LA, Sandroff BM, Suh Y, Balantrapu S, Motl RW (2013) Steps per day among persons with multiple sclerosis: variation by demographic, clinical, and device characteristics. Arch Phys Med Rehabil 94:1534–1539. doi:10.1016/j.apmr.2012.12.014 CrossRefPubMedGoogle Scholar
  31. 31.
    Shammas L, Zentek T, von Haaren B, Schlesinger S, Hey S, Rashid A (2014) Home-based system for physical activity monitoring in patients with multiple sclerosis (Pilot study). Biomed Eng Online 13:10. doi:10.1186/1475-925X-13-10 PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Learmonth YC, Dlugonski DD, Pilutti LA, Sandroff BM, Motl RW (2013) The reliability, precision and clinically meaningful change of walking assessments in multiple sclerosis. Mult Scler 19:1784–1791. doi:10.1177/1352458513483890 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Núria Sola-Valls
    • 1
  • Yolanda Blanco
    • 1
  • Maria Sepúlveda
    • 1
  • Sara Llufriu
    • 1
  • Elena H. Martínez-Lapiscina
    • 1
  • Delon La Puma
    • 1
  • Francesc Graus
    • 1
  • Pablo Villoslada
    • 1
  • Albert Saiz
    • 1
  1. 1.Service of Neurology, Hospital Clínic and Institut d´Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Center of NeuroimmunologyUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations