Journal of Neurology

, Volume 262, Issue 2, pp 316–325 | Cite as

Compensatory eye and head movements of patients with homonymous hemianopia in the naturalistic setting of a driving simulation

  • Markus BahnemannEmail author
  • Johanna Hamel
  • Sophie De Beukelaer
  • Sven Ohl
  • Stefanie Kehrer
  • Heinrich Audebert
  • Antje Kraft
  • Stephan A. Brandt
Original Communication


Homonymous hemianopia (HH) is a frequent deficit resulting from lesions to post-chiasmal brain structures with a significant negative impact on activities of daily living. To address the question how patients with HH may compensate their visual field defect in a naturalistic environment, we performed a driving simulation experiment and quantitatively analyzed both eye and head movements using a head-mounted pupil camera. 14 patients with HH and 14 matched healthy control subjects participated in the study. Based on the detection performance of dynamically moving obstacles, which appeared unexpectedly along the sides of the road track, we divided the patient group into a high- and a low-performance group. Then, we compared parameters of eye and head movements between the two patient groups and the matched healthy control group to identify those which mediate successful detection of potentially hazardous objects. Differences in detection rates could not be explained by demographic variables or the extent of the visual field defect. Instead, high performance of patients with HH in the naturalistic setting of our driving simulation depended on an adapted visual exploratory behavior characterized by a relative increase in the amplitude and a corresponding increase in the peak velocity of saccades, widening horizontally the distribution of eye movements, and by a shift of the overall distribution of saccades into the blind hemifield. The result of the group comparison analyses was confirmed by a subsequent stepwise regression analysis which identified the horizontal spread of eye movements as single factor predicting the detection of hazardous objects.


Homonymous hemianopia Stroke Driving simulation Eye and head movements Visual exploratory behavior Compensation 



The study received funding from the Federal Ministry of Education (BMBF) via the grant CSB (01 EO 0801). The Center for Stroke Research Berlin (CSB) is an integrated research and treatment center. We thank the EUWAX Stiftung for additional financial support.

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

415_2014_7554_MOESM1_ESM.pdf (167 kb)
Supplementary material 1 (PDF 166 kb)


  1. 1.
    Rathore SS, Hinn AR, Cooper LS, Tyroler HA, Rosamond WD (2002) Characterization of incident stroke signs and symptoms: findings from the atherosclerosis risk in communities study. Stroke 33:2718–2721. doi: 10.1161/01.STR.0000035286.87503.31 CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang X, Kedar S, Lynn MJ, Newman NJ, Biousse V (2006) Homonymous hemianopias: clinical–anatomic correlations in 904 cases. Neurology 66:906–910. doi: 10.1212/01.wnl.0000203913.12088.93 CrossRefPubMedGoogle Scholar
  3. 3.
    Kraft A, Grimsen C, Kehrer S, Bahnemann M, Spang K, Prass M, Irlbacher K, Köhnlein M, Lipfert A, Brunner F, Kastrup A, Fahle M, Brandt SA (2014) Neurological and neuropsychological characteristics of occipital, occipito-temporal and occipito-parietal infarction. Cortex 56:38–50. doi: 10.1016/j.cortex.2012.10.004 CrossRefPubMedGoogle Scholar
  4. 4.
    Zihl J (1995) Visual scanning behavior in patients with homonymous hemianopia. Neuropsychologia 33:287–303CrossRefPubMedGoogle Scholar
  5. 5.
    Hardiess G, Papageorgiou E, Schiefer U, Mallot HA (2010) Functional compensation of visual field deficits in hemianopic patients under the influence of different task demands. Vision Res 50:1158–1172. doi: 10.1016/j.visres.2010.04.004 CrossRefPubMedGoogle Scholar
  6. 6.
    Pambakian AL, Wooding DS, Patel N, Morland AB, Kennard C, Mannan SK (2000) Scanning the visual world: a study of patients with homonymous hemianopia. J Neurol Neurosurg Psychiatry 69:751–759PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Hayhoe M, Ballard D (2005) Eye movements in natural behavior. Trends Cogn Sci 9:188–194. doi: 10.1016/j.tics.2005.02.009 CrossRefPubMedGoogle Scholar
  8. 8.
    Wood JM, McGwin G, Elgin J, Vaphiades MS, Braswell RA, DeCarlo DK, Kline LB, Meek GC, Searcey K, Owsley C (2009) On-road driving performance by persons with hemianopia and quadrantanopia. Invest Ophthalmol Vis Sci 50:577–585. doi: 10.1167/iovs.08-2506 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Tant MLM, Brouwer WH, Cornelissen FW, Kooijman AC (2002) Driving and visuospatial performance in people with hemianopia. Neuropsychol Rehabil 12:419–437. doi: 10.1080/09602010244000183 CrossRefGoogle Scholar
  10. 10.
    Coeckelbergh TRM, Brouwer WH, Cornelissen FW, Van Wolffelaar P, Kooijman AC (2002) The effect of visual field defects on driving performance: a driving simulator study. Arch Ophthalmol 120:1509–1516CrossRefPubMedGoogle Scholar
  11. 11.
    Bowers AR, Mandel AJ, Goldstein RB, Peli E (2009) Driving with hemianopia, I: detection performance in a driving simulator. Invest Ophthalmol Vis Sci 50:5137–5147. doi: 10.1167/iovs.09-3799 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Alberti CF, Peli E, Bowers AR (2014) Driving with hemianopia: III. Detection of stationary and approaching pedestrians in a simulator. Invest Ophthalmol Vis Sci 55:368–374PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Papageorgiou E, Hardiess G, Ackermann H, Wiethoelter H, Dietz K, Mallot HA, Schiefer U (2012) Collision avoidance in persons with homonymous visual field defects under virtual reality conditions. Vision Res 52:20–30. doi: 10.1016/j.visres.2011.10.019 CrossRefPubMedGoogle Scholar
  14. 14.
    Racette L, Casson EJ (2005) The impact of visual field loss on driving performance: evidence from on-road driving assessments. Optom Vis Sci 82:668–674CrossRefPubMedGoogle Scholar
  15. 15.
    Bowers AR, Mandel AJ, Goldstein RB, Peli E (2010) Driving with hemianopia, II: lane position and steering in a driving simulator. Invest Ophthalmol Vis Sci 51:6605–6613. doi: 10.1167/iovs.10-5310 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Ishiai S, Furukawa T, Tsukagoshi H (1987) Eye-fixation patterns in homonymous hemianopia and unilateral spatial neglect. Neuropsychologia 25:675–679CrossRefPubMedGoogle Scholar
  17. 17.
    Wood JM, McGwin G, Elgin J, Vaphiades MS, Braswell RA, DeCarlo DK, Kline LB, Owsley C (2011) Hemianopic and quadrantanopic field loss, eye and head movements, and driving. Invest Ophthalmol Vis Sci 52:1220–1225. doi: 10.1167/iovs.10-6296 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Papageorgiou E, Hardiess G, Mallot HA, Schiefer U (2012) Gaze patterns predicting successful collision avoidance in patients with homonymous visual field defects. Vision Res. doi: 10.1016/j.visres.2012.06.004 Google Scholar
  19. 19.
    Hamel J, Kraft A, Ohl S, De Beukelaer S, Audebert HJ, Brandt SA (2012) Driving simulation in the clinic: testing visual exploratory behavior in daily life activities in patients with visual field defects. J Vis Exp 67:e4427. doi: 10.3791/4427 PubMedGoogle Scholar
  20. 20.
    Hamel J, De Beukelaer S, Kraft A, Ohl S, Audebert HJ, Brandt SA (2013) Age-related changes in visual exploratory behavior in a natural scene setting. Front Psychol 4:339. doi: 10.3389/fpsyg.2013.00339 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Cantin V, Lavallière M, Simoneau M, Teasdale N (2009) Mental workload when driving in a simulator: effects of age and driving complexity. Accid Anal Prev 41:763–771. doi: 10.1016/j.aap.2009.03.019 CrossRefPubMedGoogle Scholar
  22. 22.
    Brooks JO, Goodenough RR, Crisler MC, Klein ND, Alley RL, Koon BL, Logan WC, Ogle JH, Tyrrell RA, Wills RF (2010) Simulator sickness during driving simulation studies. Accid Anal Prev 42:788–796. doi: 10.1016/j.aap.2009.04.013 CrossRefPubMedGoogle Scholar
  23. 23.
    Einhäuser W, Schumann F, Bardins S, Bartl K, Böning G, Schneider E, König P (2007) Human eye–head co-ordination in natural exploration. Network 18:267–297. doi: 10.1080/09548980701671094 CrossRefPubMedGoogle Scholar
  24. 24.
    Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6:241–252. doi: 10.1080/00401706.1964.10490181 CrossRefGoogle Scholar
  25. 25.
    R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  26. 26.
    Zuber BL, Stark L, Cook G (1965) Microsaccades and the velocity–amplitude relationship for saccadic eye movements. Science 150:1459–1460CrossRefPubMedGoogle Scholar
  27. 27.
    Kasneci E, Sippel K, Aehling K, Heister M, Rosenstiel W, Schiefer U, Papageorgiou E (2014) Driving with binocular visual field loss? A study on a supervised on-road parcours with simultaneous eye and head tracking. PLoS One 9:e87470. doi: 10.1371/journal.pone.0087470 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Bowers AR, Ananyev E, Mandel AJ, Goldstein RB, Peli E (2014) Driving with hemianopia: IV. Head scanning and detection at intersections in a simulator. Invest Ophthalmol Vis Sci 55:1540–1548. doi: 10.1167/iovs.13-12748 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Freedman EG (2008) Coordination of the eyes and head during visual orienting. Exp Brain Res 190:369–387. doi: 10.1007/s00221-008-1504-8 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Schofield TM, Leff AP (2009) Rehabilitation of hemianopia. Curr Opin Neurol 22:36–40. doi: 10.1097/WCO.0b013e32831f1b2c CrossRefPubMedGoogle Scholar
  31. 31.
    Bouwmeester L, Heutink J, Lucas C (2007) The effect of visual training for patients with visual field defects due to brain damage: a systematic review. J Neurol Neurosurg Psychiatry 78:555–564. doi: 10.1136/jnnp.2006.103853 PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Roth T, Sokolov AN, Messias A, Roth P, Weller M, Trauzettel-Klosinski S (2009) Comparing explorative saccade and flicker training in hemianopia: a randomized controlled study. Neurology 72:324–331CrossRefPubMedGoogle Scholar
  33. 33.
    Kooijman A, Brouwer W, Coeckelbergh T, Tant M, Cornelissen F, Bredewoud R, Melis-Dankers B (2004) Compensatory viewing training improves practical fitness to drive of subjects with impaired vision. Vis Impair Res 6:1–27. doi: 10.1080/13882350390486965 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Markus Bahnemann
    • 1
    • 2
    Email author
  • Johanna Hamel
    • 3
  • Sophie De Beukelaer
    • 1
  • Sven Ohl
    • 4
  • Stefanie Kehrer
    • 1
  • Heinrich Audebert
    • 5
    • 6
  • Antje Kraft
    • 1
    • 7
  • Stephan A. Brandt
    • 1
  1. 1.Department of NeurologyCharité Campus Mitte, Charité UniversitätsmedizinBerlinGermany
  2. 2.Department of PsychiatrySchlosspark-ClinicBerlinGermany
  3. 3.Department of NeurologyUniversity of RochesterRochesterUSA
  4. 4.Berlin School of Mind and BrainHumboldt-Universität zu BerlinBerlinGermany
  5. 5.Department of NeurologyCharité Campus Benjamin Franklin, Charité UniversitätsmedizinBerlinGermany
  6. 6.Center for Stroke Research Berlin (CSB)Charité UniversitätsmedizinBerlinGermany
  7. 7.Clinical Research Unit, Berlin Institute of HealthCharité Campus Mitte, Charité UniversitätsmedizinBerlinGermany

Personalised recommendations