Journal of Neurology

, Volume 261, Issue 8, pp 1628–1635 | Cite as

Cerebral microbleeds in patients with Parkinson’s disease

  • Jee Hyun Ham
  • Han Yi
  • Mun Kyung Sunwoo
  • Jin Yong Hong
  • Young H. Sohn
  • Phil Hyu LeeEmail author
Original Communication


Cerebral microbleeds (CMBs) are known to be associated with cognitive impairments in the elderly and in patients with various diseases; however, the nature of this association has not yet been evaluated in Parkinson’s disease (PD). In the present study, we analyzed the incidence of CMBs in PD according to cognitive status, and the impact of CMBs on cognitive performance was also evaluated. The CMBs in PD with dementia (n = 36), mild cognitive impairment (MCI, n = 46), or cognitively normal (n = 41) were analyzed using conventional T2*-weighted gradient-recalled echo images. Additionally, the relationship between the presence of CMBs and cognitive performance on individual tests of cognitive subdomains was analyzed using a detailed neuropsychological test. CMBs occurred more frequently in PD patients with dementia (36.1 %) compared to those with MCI (15.2 %), those who are cognitively normal (14.6 %), and normal controls (12.2 %, p = 0.025). However, the significant association of CMBs with PD dementia disappeared after adjusting white matter hyperintensities (WMHs) as a covariate. The frequencies of deep, lobar, and infratentorial CMBs did not differ among the four groups. After adjusting for age, sex, years of education, and WMHs, PD patients with CMBs had poorer performance in attention domain compared with those without CMBs (34.9 vs 42.6, p = 0.018). The present data demonstrate that even though CMBs were inseparably associated with the presence of WMHs, CMBs occur more commonly in PD patients with dementia than in those without dementia. Additionally, the burden of CMBs may contribute to further cognitive impairment in PD.


Cerebral microbleeds Parkinson’s disease Cognitive performance 



This study was supported by a Grant of the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare and Family Affairs, Republic of Korea (A121942).

Conflicts of interest

Nothing to report.

Supplementary material

415_2014_7403_MOESM1_ESM.doc (42 kb)
Supplementary material 1 (DOC 41 kb)


  1. 1.
    Aarsland D, Andersen K, Larsen JP, Lolk A, Nielsen H, Kragh-Sorensen P (2001) Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology 56:730–736CrossRefPubMedGoogle Scholar
  2. 2.
    Cummings JL (1988) Intellectual impairment in Parkinson’s disease: clinical, pathologic, and biochemical correlates. J Geriatr Psychiatry Neurol 1:24–36CrossRefPubMedGoogle Scholar
  3. 3.
    Aarsland D, Bronnick K, Larsen JP, Tysnes OB, Alves G (2009) Cognitive impairment in incident, untreated Parkinson disease: the Norwegian ParkWest study. Neurology 72:1121–1126. doi: 10.1212/01.wnl.0000338632.00552.cb CrossRefPubMedGoogle Scholar
  4. 4.
    Emre M (2003) Dementia associated with Parkinson’s disease. Lancet Neurol 2:229–237CrossRefPubMedGoogle Scholar
  5. 5.
    Compta Y, Parkkinen L, O’Sullivan SS, Vandrovcova J, Holton JL, Collins C, Lashley T, Kallis C, Williams DR, de Silva R, Lees AJ, Revesz T (2011) Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? Brain 134:1493–1505. doi: 10.1093/brain/awr031 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Shin J, Choi S, Lee JE, Lee HS, Sohn YH, Lee PH (2012) Subcortical white matter hyperintensities within the cholinergic pathways of Parkinson’s disease patients according to cognitive status. J Neurol Neurosurg Psychiatry 83:315–321. doi: 10.1136/jnnp-2011-300872 CrossRefPubMedGoogle Scholar
  7. 7.
    Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Al-Shahi Salman R, Warach S, Launer LJ, Van Buchem MA, Breteler MM (2009) Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 8:165–174. doi: 10.1016/s1474-4422(09)70013-4 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Fisher M, French S, Ji P, Kim RC (2010) Cerebral microbleeds in the elderly: a pathological analysis. Stroke 41:2782–2785. doi: 10.1161/strokeaha.110.593657 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Fazekas F, Kleinert R, Roob G, Kleinert G, Kapeller P, Schmidt R, Hartung HP (1999) Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 20:637–642PubMedGoogle Scholar
  10. 10.
    Yakushiji Y, Nishiyama M, Yakushiji S, Hirotsu T, Uchino A, Nakajima J, Eriguchi M, Nanri Y, Hara M, Horikawa E, Kuroda Y (2008) Brain microbleeds and global cognitive function in adults without neurological disorder. Stroke 39:3323–3328CrossRefPubMedGoogle Scholar
  11. 11.
    Seo SW, Hwa Lee B, Kim EJ, Chin J, Sun Cho Y, Yoon U, Na DL (2007) Clinical significance of microbleeds in subcortical vascular dementia. Stroke 38:1949–1951. doi: 10.1161/strokeaha.106.477315 CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang M, Chen M, Wang Q, Yun W, Zhang Z, Yin Q, Huang Q, Zhu W (2013) Relationship between cerebral microbleeds and cognitive function in lacunar infarct. J Int Med Res 41:347–355. doi: 10.1177/0300060513476448 CrossRefPubMedGoogle Scholar
  13. 13.
    Liem MK, Lesnik Oberstein SA, Haan J, van der Neut IL, Ferrari MD, van Buchem MA, Middelkoop HA, van der Grond J (2009) MRI correlates of cognitive decline in CADASIL: a 7-year follow-up study. Neurology 72:143–148. doi: 10.1212/01.wnl.0000339038.65508.96 CrossRefPubMedGoogle Scholar
  14. 14.
    Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Kang Y, Na D (2003) Seoul neuropsychological screening battery. Incheon Republic of Korea Human Brain Research & Consulting Corp Google Scholar
  16. 16.
    Kim H, Na DL (1999) Brief report normative data on the Korean Version of the Boston Naming Test. J Clin Exp Neuropsychol 21:127–133CrossRefPubMedGoogle Scholar
  17. 17.
    Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC, Mollenhauer B, Adler CH, Marder K, Williams-Gray CH, Aarsland D, Kulisevsky J, Rodriguez-Oroz MC, Burn DJ, Barker RA, Emre M (2012) Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force Guidelines. Mov Disord 27:349–356. doi: 10.1002/mds.24893 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, Broe GA, Cummings J, Dickson DW, Gauthier S, Goldman J, Goetz C, Korczyn A, Lees A, Levy R, Litvan I, McKeith I, Olanow W, Poewe W, Quinn N, Sampaio C, Tolosa E, Dubois B (2007) Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 22:1689–1707. doi: 10.1002/mds.21507 (quiz 1837)CrossRefPubMedGoogle Scholar
  19. 19.
    Fahn S, Elton R, Members of the UPDRS Development Committee Unified Parkinson’s Disease rating scale (1987) Recent developments in Parkinson’s disease. In: Fahn SMC, Colne DB, Goldstein (eds) Florham Park NY Mac Millan Health care Information, pp 153–163Google Scholar
  20. 20.
    Vernooij MW, van der Lugt A, Ikram MA, Wielopolski PA, Niessen WJ, Hofman A, Krestin GP, Breteler MM (2008) Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 70:1208–1214. doi: 10.1212/01.wnl.0000307750.41970.d9 CrossRefPubMedGoogle Scholar
  21. 21.
    Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjogren M, Wallin A, Ader H, Leys D, Pantoni L, Pasquier F, Erkinjuntti T, Scheltens P (2001) A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 32:1318–1322CrossRefPubMedGoogle Scholar
  22. 22.
    Poels MM, Ikram MA, van der Lugt A, Hofman A, Krestin GP, Breteler MM, Vernooij MW (2011) Incidence of cerebral microbleeds in the general population: the Rotterdam Scan Study. Stroke 42:656–661. doi: 10.1161/strokeaha.110.607184 CrossRefPubMedGoogle Scholar
  23. 23.
    Vinters HV (1987) Cerebral amyloid angiopathy. A critical review. Stroke 18:311–324CrossRefPubMedGoogle Scholar
  24. 24.
    Mesker DJ, Poels MM, Ikram MA, Vernooij MW, Hofman A, Vrooman HA, van der Lugt A, Breteler MM (2011) Lobar distribution of cerebral microbleeds: the Rotterdam Scan Study. Arch Neurol 68:656–659. doi: 10.1001/archneurol.2011.93 CrossRefPubMedGoogle Scholar
  25. 25.
    Kim JS, Shim YS, Song IU, Yoo JY, Kim HT, Kim YI, Lee KS (2009) Cardiac sympathetic denervation and its association with cognitive deficits in Parkinson’s disease. Parkinsonism Relat Disord 15:706–708. doi: 10.1016/j.parkreldis.2009.01.008 CrossRefPubMedGoogle Scholar
  26. 26.
    Poewe W (2007) Dysautonomia and cognitive dysfunction in Parkinson’s disease. Mov Disord 22(Suppl 17):S374–S378. doi: 10.1002/mds.21681 CrossRefPubMedGoogle Scholar
  27. 27.
    Kim JS, Oh YS, Lee KS, Kim YI, Yang DW, Goldstein DS (2012) Association of cognitive dysfunction with neurocirculatory abnormalities in early Parkinson disease. Neurology 79:1323–1331. doi: 10.1212/WNL.0b013e31826c1acd PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Kato H, Izumiyama M, Izumiyama K, Takahashi A, Itoyama Y (2002) Silent cerebral microbleeds on T2*-weighted MRI: correlation with stroke subtype, stroke recurrence, and leukoaraiosis. Stroke 33:1536–1540CrossRefPubMedGoogle Scholar
  29. 29.
    Koennecke HC (2006) Cerebral microbleeds on MRI: prevalence, associations, and potential clinical implications. Neurology 66:165–171. doi: 10.1212/01.wnl.0000194266.55694.1e CrossRefPubMedGoogle Scholar
  30. 30.
    Yamada S, Saiki M, Satow T, Fukuda A, Ito M, Minami S, Miyamoto S (2012) Periventricular and deep white matter leukoaraiosis have a closer association with cerebral microbleeds than age. Eur J Neurol 19:98–104. doi: 10.1111/j.1468-1331.2011.03451.x CrossRefPubMedGoogle Scholar
  31. 31.
    Sullivan P, Pary R, Telang F, Rifai AH, Zubenko GS (1990) Risk factors for white matter changes detected by magnetic resonance imaging in the elderly. Stroke 21:1424–1428CrossRefPubMedGoogle Scholar
  32. 32.
    de Leeuw FE, de Groot JC, Oudkerk M, Witteman JC, Hofman A, van Gijn J, Breteler MM (2002) Hypertension and cerebral white matter lesions in a prospective cohort study. Brain 125:765–772CrossRefPubMedGoogle Scholar
  33. 33.
    Murray AD, Staff RT, Shenkin SD, Deary IJ, Starr JM, Whalley LJ (2005) Brain white matter hyperintensities: relative importance of vascular risk factors in nondemented elderly people. Radiology 237:251–257. doi: 10.1148/radiol.2371041496 CrossRefPubMedGoogle Scholar
  34. 34.
    Lee SJ, Kim JS, Yoo JY, Song IU, Kim BS, Jung SL, Yang DW, Kim YI, Jeong DS, Lee KS (2010) Influence of white matter hyperintensities on the cognition of patients with Parkinson disease. Alzheimer Dis Assoc Disord 24:227–233. doi: 10.1097/WAD.0b013e3181d71a13 PubMedGoogle Scholar
  35. 35.
    Lee PH, Kim HS, Lee JE, Choi Y, Hong JY, Nam HS, Sohn YH, Kim HO (2011) Comparison of endothelial progenitor cells in Parkinson’s disease patients treated with levodopa and levodopa/COMT inhibitor. PLoS One 6:e21536. doi: 10.1371/journal.pone.0021536 PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Rouhl RP, van Oostenbrugge RJ, Damoiseaux J, Tervaert JW, Lodder J (2008) Endothelial progenitor cell research in stroke: a potential shift in pathophysiological and therapeutical concepts. Stroke 39:2158–2165. doi: 10.1161/strokeaha.107.507251 CrossRefPubMedGoogle Scholar
  37. 37.
    Jickling G, Salam A, Mohammad A, Hussain MS, Scozzafava J, Nasser AM, Jeerakathil T, Shuaib A, Camicioli R (2009) Circulating endothelial progenitor cells and age-related white matter changes. Stroke 40:3191–3196. doi: 10.1161/strokeaha.109.554527 CrossRefPubMedGoogle Scholar
  38. 38.
    Young VG, Halliday GM, Kril JJ (2008) Neuropathologic correlates of white matter hyperintensities. Neurology 71:804–811. doi: 10.1212/01.wnl.0000319691.50117.54 CrossRefPubMedGoogle Scholar
  39. 39.
    Koennecke H (2006) Cerebral microbleeds on MRI: prevalence, associations, and potential clinical implications. Neurology 66:165–171CrossRefPubMedGoogle Scholar
  40. 40.
    Bartels AL, van Berckel BN, Lubberink M, Luurtsema G, Lammertsma AA, Leenders KL (2008) Blood-brain barrier P-glycoprotein function is not impaired in early Parkinson’s disease. Parkinsonism Relat Disord 14:505–508. doi: 10.1016/j.parkreldis.2007.11.007 CrossRefPubMedGoogle Scholar
  41. 41.
    Bartels AL, Kortekaas R, Bart J, Willemsen AT, de Klerk OL, de Vries JJ, van Oostrom JC, Leenders KL (2009) Blood-brain barrier P-glycoprotein function decreases in specific brain regions with aging: a possible role in progressive neurodegeneration. Neurobiol Aging 30:1818–1824. doi: 10.1016/j.neurobiolaging.2008.02.002 CrossRefPubMedGoogle Scholar
  42. 42.
    Mok V, Srikanth V, Xiong Y, Phan TG, Moran C, Chu S, Zhao Q, Chu WW, Wong A, Hong Z, Liu X, Wong LK, Ding D (2014) Race-ethnicity and cerebral small vessel disease—comparison between Chinese and White populations. Int J Stroke. doi: 10.1111/ijs.12270 PubMedGoogle Scholar
  43. 43.
    Feigin VL, Lawes CM, Bennett DA, Anderson CS (2003) Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2:43–53CrossRefPubMedGoogle Scholar
  44. 44.
    Cordonnier C, van der Flier WM, Sluimer JD, Leys D, Barkhof F, Scheltens P (2006) Prevalence and severity of microbleeds in a memory clinic setting. Neurology 66:1356–1360. doi: 10.1212/ CrossRefPubMedGoogle Scholar
  45. 45.
    Kwa VI, Franke CL, Verbeeten B Jr, Stam J (1998) Silent intracerebral microhemorrhages in patients with ischemic stroke. Amsterdam Vascular Medicine Group. Ann Neurol 44:372–377. doi: 10.1002/ana.410440313 CrossRefPubMedGoogle Scholar
  46. 46.
    Werring DJ, Frazer DW, Coward LJ, Losseff NA, Watt H, Cipolotti L, Brown MM, Jager HR (2004) Cognitive dysfunction in patients with cerebral microbleeds on T2*-weighted gradient-echo MRI. Brain 127:2265–2275. doi: 10.1093/brain/awh253 CrossRefPubMedGoogle Scholar
  47. 47.
    Patel B, Lawrence AJ, Chung AW, Rich P, Mackinnon AD, Morris RG, Barrick TR, Markus HS (2013) Cerebral microbleeds and cognition in patients with symptomatic small vessel disease. Stroke 44:356–361. doi: 10.1161/strokeaha.112.670216 CrossRefPubMedGoogle Scholar
  48. 48.
    Benedictus MR, Goos JD, Binnewijzend MA, Muller M, Barkhof F, Scheltens P, Prins ND, van der Flier WM (2013) Specific risk factors for microbleeds and white matter hyperintensities in Alzheimer’s disease. Neurobiol Aging. doi: 10.1016/j.neurobiolaging.2013.04.023 PubMedGoogle Scholar
  49. 49.
    Klinkenberg I, Sambeth A, Blokland A (2011) Acetylcholine and attention. Behav Brain Res 221:430–442CrossRefPubMedGoogle Scholar
  50. 50.
    Jeerakathil T, Wolf PA, Beiser A, Hald JK, Au R, Kase CS, Massaro JM, DeCarli C (2004) Cerebral microbleeds: prevalence and associations with cardiovascular risk factors in the Framingham Study. Stroke 35:1831–1835. doi: 10.1161/01.STR.0000131809.35202.1b CrossRefPubMedGoogle Scholar
  51. 51.
    Lee SH, Bae HJ, Ko SB, Kim H, Yoon BW, Roh JK (2004) Comparative analysis of the spatial distribution and severity of cerebral microbleeds and old lacunes. J Neurol Neurosurg Psychiatry 75:423–427PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jee Hyun Ham
    • 1
  • Han Yi
    • 1
  • Mun Kyung Sunwoo
    • 2
  • Jin Yong Hong
    • 3
  • Young H. Sohn
    • 1
  • Phil Hyu Lee
    • 1
    • 4
    Email author
  1. 1.Department of NeurologyYonsei University College of MedicineSeoulKorea
  2. 2.Department of Neurology, BundangJesaeng General HospitalKwandong University College of MedicineSeongnamKorea
  3. 3.Department of NeurologyYonsei University Wonju College of MedicineWonjuKorea
  4. 4.Severance Biomedical Science InstituteYonsei UniversitySeoulSouth Korea

Personalised recommendations