Journal of Neurology

, Volume 261, Issue 6, pp 1234–1243 | Cite as

Cerebrospinal fluid analysis in Alzheimer’s disease: technical issues and future developments

  • Simone Lista
  • Henrik Zetterberg
  • Bruno Dubois
  • Kaj Blennow
  • Harald Hampel
Techniques in Clinical Science


Alzheimer’s disease (AD) is a leading cause of morbidity, mortality, and a major epidemic worldwide. Although clinical assessment continues to remain the keystone for patient management and clinical trials, such evaluation has important limitations. In this context, cerebrospinal fluid (CSF) biomarkers are important tools to better identify high-risk individuals, to diagnose AD promptly and accurately, especially at the prodromal mild cognitive impairment stage of the disease, and to effectively prognosticate and treat AD patients. Recent advances in functional genomics, proteomics, metabolomics, and bioinformatics will hopefully revolutionize unbiased inquiries into several putative CSF markers of cerebral pathology that may be concisely informative with regard to the various stages of AD progression through years and decades. Moreover, the identification of efficient drug targets and development of optimal therapeutic strategies for AD will increasingly rely on a better understanding and integration of the systems biology paradigm, which will allow predicting the series of events and resulting responses of the biological network triggered by the introduction of new therapeutic compounds. In this scenario, unbiased systems biology-based diagnostic and prognostic models in AD will consist of relevant comprehensive panels of molecules and key branches of the disease-affected cellular neuronal network. Such characteristic and unbiased biomarkers will more accurately and comprehensively reflect pathophysiology from the early asymptomatic and presymptomatic to the final prodromal and symptomatic clinical stages in individual patients (and their individual genetic disease predisposition), ultimately increasing the chances of success of future disease modifying and preventive treatments.


Cerebrospinal fluid Alzheimer’s disease Biomarkers Immunoassays Selected reaction monitoring Systems biology 



HH and SL are supported by the AXA Research Fund (AXA RF) and the Fondation pour la Recherche sur Alzheimer (FRA), Paris, France. H. Z. and K. B. are supported by Grants from the Swedish Research Council.

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403CrossRefPubMedGoogle Scholar
  2. 2.
    Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185CrossRefPubMedGoogle Scholar
  3. 3.
    Walsh DM, Selkoe DJ (2007) A beta oligomers––a decade of discovery. J Neurochem 101:1172–1184CrossRefPubMedGoogle Scholar
  4. 4.
    Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, He F, Sun X, Thomas RG, Aisen PS, Alzheimer’s Disease Cooperative Study Steering Committee, Siemers E, Sethuraman G, Mohs R, Semagacestat Study Group (2013) A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 369:341–350CrossRefPubMedGoogle Scholar
  5. 5.
    Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Ferris S, Reichert M, Ketter N, Nejadnik B, Guenzler V, Miloslavsky M, Wang D, Lu Y, Lull J, Tudor IC, Liu E, Grundman M, Yuen E, Black R, Brashear HR, Bapineuzumab 301 and 302 Clinical Trial Investigators (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370:322–333PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, Raman R, Sun X, Aisen PS, Siemers E, Liu-Seifert H, Mohs R, Alzheimer’s Disease Cooperative Study Steering Committee, Solanezumab Study Group (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370:311–321CrossRefPubMedGoogle Scholar
  7. 7.
    Hampel H, Lista S (2012) Alzheimer disease: from inherited to sporadic AD-crossing the biomarker bridge. Nat Rev Neurol 8:598–600CrossRefPubMedGoogle Scholar
  8. 8.
    Moulder KL, Snider BJ, Mills SL, Buckles VD, Santacruz AM, Bateman RJ, Morris JC (2013) Dominantly Inherited Alzheimer network: facilitating research and clinical trials. Alzheimers Res Ther 5:48PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O’brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746CrossRefPubMedGoogle Scholar
  10. 10.
    Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, Gauthier S, Hampel H, Jicha GA, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Sarazin M, de Souza LC, Stern Y, Visser PJ, Scheltens P (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9:1118–1127CrossRefPubMedGoogle Scholar
  11. 11.
    Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144CrossRefPubMedGoogle Scholar
  12. 12.
    Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Liu E, Morris JC, Petersen RC, Saykin AJ, Schmidt ME, Shaw L, Shen L, Siuciak JA, Soares H, Toga AW, Trojanowski JQ, Alzheimer’s Disease Neuroimaging Initiative (2013) The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement 9:e111–e194PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Lista S, Garaci FG, Ewers M, Teipel S, Zetterberg H, Blennow K, Hampel H (2013) CSF Aβ1-42 combined with neuroimaging biomarkers in the early detection, diagnosis and prediction of Alzheimer’s disease. Alzheimers Dement. doi: 10.1016/j.jalz.2013.04.506 PubMedGoogle Scholar
  14. 14.
    Risacher SL, Saykin AJ (2013) Neuroimaging and other biomarkers for Alzheimer’s disease: the changing landscape of early detection. Annu Rev Clin Psychol 9:621–648PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Liu E, Morris JC, Petersen RC, Saykin AJ, Schmidt ME, Shaw L, Siuciak JA, Soares H, Toga AW, Trojanowski JQ, Alzheimer’s Disease Neuroimaging Initiative (2012) The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement 8:S1–S68PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27:1372–1384CrossRefPubMedGoogle Scholar
  17. 17.
    Davidsson P, Blennow K (1998) Neurochemical dissection of synaptic pathology in Alzheimer’s disease. Int Psychogeriatr 10:11–23CrossRefPubMedGoogle Scholar
  18. 18.
    Davidsson P, Jahn R, Bergquist J, Ekman R, Blennow K (1996) Synaptotagmin, a synaptic vesicle protein, is present in human cerebrospinal fluid: a new biochemical marker for synaptic pathology in Alzheimer disease? Mol Chem Neuropathol 27:195–210CrossRefPubMedGoogle Scholar
  19. 19.
    Davidsson P, Puchades M, Blennow K (1999) Identification of synaptic vesicle, pre- and postsynaptic proteins in human cerebrospinal fluid using liquid-phase isoelectric focusing. Electrophoresis 20:431–437CrossRefPubMedGoogle Scholar
  20. 20.
    Thorsell A, Bjerke M, Gobom J, Brunhage E, Vanmechelen E, Andreasen N, Hansson O, Minthon L, Zetterberg H, Blennow K (2010) Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer’s disease. Brain Res 1362:13–22CrossRefPubMedGoogle Scholar
  21. 21.
    Zougman A, Pilch B, Podtelejnikov A, Kiehntopf M, Schnabel C, Kumar C, Mann M (2008) Integrated analysis of the cerebrospinal fluid peptidome and proteome. J Proteome Res 7:386–399CrossRefPubMedGoogle Scholar
  22. 22.
    Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, Piech T, Patel PP, Chang L, Rivnak AJ, Ferrell EP, Randall JD, Provuncher GK, Walt DR, Duffy DC (2010) Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol 28:595–599PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Savage MJ, Kalinina J, Wolfe A, Tugusheva K, Korn R, Cash-Mason T, Maxwell JW, Hatcher NG, Haugabook SJ, Wu G, Howell BJ, Renger JJ, Shughrue PJ, McCampbell A (2014) A sensitive aβ oligomer assay discriminates Alzheimer’s and aged control cerebrospinal fluid. J Neurosci 34:2884–2897CrossRefPubMedGoogle Scholar
  24. 24.
    Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert JC, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St George-Hyslop P, Singleton A, Hardy J, Alzheimer Genetic Analysis Group (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Mattsson N, Tabatabaei S, Johansson P, Hansson O, Andreasson U, Månsson JE, Johansson JO, Olsson B, Wallin A, Svensson J, Blennow K, Zetterberg H (2011) Cerebrospinal fluid microglial markers in Alzheimer’s disease: elevated chitotriosidase activity but lack of diagnostic utility. Neuromolecular Med 13:151–159CrossRefPubMedGoogle Scholar
  27. 27.
    Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ, Mintun MA, Peskind ER, Li G, Galasko DR, Clark CM, Quinn JF, D’Angelo G, Malone JP, Townsend RR, Morris JC, Fagan AM, Holtzman DM (2010) YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry 68:903–912PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Barone E, Di Domenico F, Mancuso C, Butterfield DA (2014) The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: it’s time for reconciliation. Neurobiol Dis 62:144–159CrossRefPubMedGoogle Scholar
  29. 29.
    Montine TJ, Beal MF, Cudkowicz ME, O’Donnell H, Margolin RA, McFarland L, Bachrach AF, Zackert WE, Roberts LJ, Morrow JD (1999) Increased CSF F2-isoprostane concentration in probable AD. Neurology 52:562–565CrossRefPubMedGoogle Scholar
  30. 30.
    Montine TJ, Markesbery WR, Morrow JD, Roberts LJ 2nd (1998) Cerebrospinal fluid F2-isoprostane levels are increased in Alzheimer’s disease. Ann Neurol 44(3):410–413CrossRefPubMedGoogle Scholar
  31. 31.
    Montine TJ, Montine KS, McMahan W, Markesbery WR, Quinn JF, Morrow JD (2005) F2-isoprostanes in Alzheimer and other neurodegenerative diseases. Antioxid Redox Signal 7:269–275CrossRefPubMedGoogle Scholar
  32. 32.
    de Leon MJ, Mosconi L, Li J, De Santi S, Yao Y, Tsui WH, Pirraglia E, Rich K, Javier E, Brys M, Glodzik L, Switalski R, Saint Louis LA, Pratico D (2007) Longitudinal CSF isoprostane and MRI atrophy in the progression to AD. J Neurol 254:1666–1675CrossRefPubMedGoogle Scholar
  33. 33.
    Ringman JM, Younkin SG, Pratico D, Seltzer W, Cole GM, Geschwind DH, Rodriguez-Agudelo Y, Schaffer B, Fein J, Sokolow S, Rosario ER, Gylys KH, Varpetian A, Medina LD, Cummings JL (2008) Biochemical markers in persons with preclinical familial Alzheimer disease. Neurology 71:85–92CrossRefPubMedGoogle Scholar
  34. 34.
    Hall S, Öhrfelt A, Constantinescu R, Andreasson U, Surova Y, Bostrom F, Nilsson C, Håkan W, Decraemer H, Någga K, Minthon L, Londos E, Vanmechelen E, Holmberg B, Zetterberg H, Blennow K, Hansson O (2012) Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol 69:1445–1452CrossRefPubMedGoogle Scholar
  35. 35.
    Zetterberg H, Petzold M, Magdalinou N (2014) Cerebrospinal fluid alpha-synuclein levels in Parkinson’s disease––changed or unchanged? Eur J Neurol 21:365–367CrossRefPubMedGoogle Scholar
  36. 36.
    Noto Y, Shibuya K, Sato Y, Kanai K, Misawa S, Sawai S, Mori M, Uchiyama T, Isose S, Nasu S, Sekiguchi Y, Fujimaki Y, Kasai T, Tokuda T, Nakagawa M, Kuwabara S (2011) Elevated CSF TDP-43 levels in amyotrophic lateral sclerosis: specificity, sensitivity, and a possible prognostic value. Amyotroph Lateral Scler 12:140–143CrossRefPubMedGoogle Scholar
  37. 37.
    Geser F, Prvulovic D, O’Dwyer L, Hardiman O, Bede P, Bokde AL, Trojanowski JQ, Hampel H (2011) On the development of markers for pathological TDP-43 in amyotrophic lateral sclerosis with and without dementia. Prog Neurobiol 95:649–662PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95CrossRefGoogle Scholar
  39. 39.
    Rosén C, Zetterberg H (2013) Cerebrospinal fluid biomarkers for pathological processes in Alzheimer’s disease. Curr Opin Psychiatry 26:276–282CrossRefPubMedGoogle Scholar
  40. 40.
    Zetterberg H, Blennow K (2013) Cerebrospinal fluid biomarkers for Alzheimer’s disease: more to come? J Alzheimers Dis 33(Suppl 1):S361–S369PubMedGoogle Scholar
  41. 41.
    Cummings J, Zhong K (2014) Biomarker-driven therapeutic management of Alzheimer’s disease: establishing the foundations. Clin Pharmacol Ther 95:67–77CrossRefPubMedGoogle Scholar
  42. 42.
    Hampel H, Lista S, Khachaturian ZS (2012) Development of biomarkers to chart all Alzheimer’s disease stages: the royal road to cutting the therapeutic Gordian Knot. Alzheimers Dement 8:312–336CrossRefPubMedGoogle Scholar
  43. 43.
    Rosén C, Hansson O, Blennow K, Zetterberg H (2013) Fluid biomarkers in Alzheimer’s disease––current concepts. Mol Neurodegener 8:20PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Kang JH, Korecka M, Toledo JB, Trojanowski JQ, Shaw LM (2013) Clinical utility and analytical challenges in measurement of cerebrospinal fluid amyloid-β(1-42) and τ proteins as Alzheimer disease biomarkers. Clin Chem 59:903–916PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Andreasson U, Vanmechelen E, Shaw LM, Zetterberg H, Vanderstichele H (2012) Analytical aspects of molecular Alzheimer’s disease biomarkers. Biomark Med 6:377–389CrossRefPubMedGoogle Scholar
  46. 46.
    Mattsson N, Zegers I, Andreasson U, Bjerke M, Blankenstein MA, Bowser R, Carrillo MC, Gobom J, Heath T, Jenkins R, Jeromin A, Kaplow J, Kidd D, Laterza OF, Lockhart A, Lunn MP, Martone RL, Mills K, Pannee J, Ratcliffe M, Shaw LM, Simon AJ, Soares H, Teunissen CE, Verbeek MM, Umek RM, Vanderstichele H, Zetterberg H, Blennow K, Portelius E (2012) Reference measurement procedures for Alzheimer’s disease cerebrospinal fluid biomarkers: definitions and approaches with focus on amyloid β42. Biomark Med 6:409–417CrossRefPubMedGoogle Scholar
  47. 47.
    Wattamwar PR, Mathuranath PS (2010) An overview of biomarkers in Alzheimer’s disease. Ann Indian Acad Neurol 13(Suppl 2):S116–S123PubMedCentralPubMedGoogle Scholar
  48. 48.
    Miller BB, Mandell JW (2005) Multiplex method for measuring biomarkers of Alzheimer disease in cerebrospinal fluid. Clin Chem 51:289–290CrossRefPubMedGoogle Scholar
  49. 49.
    Kang JH, Vanderstichele H, Trojanowski JQ, Shaw LM (2012) Simultaneous analysis of cerebrospinal fluid biomarkers using microsphere-based xMAP multiplex technology for early detection of Alzheimer’s disease. Methods 56:484–493CrossRefPubMedGoogle Scholar
  50. 50.
    Zetterberg H, Wilson D, Andreasson U, Minthon L, Blennow K, Randall J, Hansson O (2013) Plasma tau levels in Alzheimer’s disease. Alzheimers Res Ther 5:9PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Zetterberg H, Mörtberg E, Song L, Chang L, Provuncher GK, Patel PP, Ferrell E, Fournier DR, Kan CW, Campbell TG, Meyer R, Rivnak AJ, Pink BA, Minnehan KA, Piech T, Rissin DM, Duffy DC, Rubertsson S, Wilson DH, Blennow K (2011) Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid β levels in humans. PLoS One 6:e28263PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Pannee J, Portelius E, Oppermann M, Atkins A, Hornshaw M, Zegers I, Höjrup P, Minthon L, Hansson O, Zetterberg H, Blennow K, Gobom J (2013) A selected reaction monitoring (SRM)-based method for absolute quantification of Aβ38, Aβ40, and Aβ42 in cerebrospinal fluid of Alzheimer’s disease patients and healthy controls. J Alzheimers Dis 33:1021–1032PubMedGoogle Scholar
  53. 53.
    Ludwig C, Claassen M, Schmidt A, Aebersold R (2012) Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry. Mol Cell Proteomics 11(M111):013987PubMedGoogle Scholar
  54. 54.
    Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9:555–566CrossRefPubMedGoogle Scholar
  55. 55.
    Bensimon A, Heck AJ, Aebersold R (2012) Mass spectrometry-based proteomics and network biology. Annu Rev Biochem 81:379–405CrossRefPubMedGoogle Scholar
  56. 56.
    Sabidó E, Selevsek N, Aebersold R (2012) Mass spectrometry-based proteomics for systems biology. Curr Opin Biotechnol 23:591–597CrossRefPubMedGoogle Scholar
  57. 57.
    Noorbakhsh F, Overall CM, Power C (2009) Deciphering complex mechanisms in neurodegenerative diseases: the advent of systems biology. Trends Neurosci 32:88–100CrossRefPubMedGoogle Scholar
  58. 58.
    Tyers M, Mann M (2003) From genomics to proteomics. Nature 422:193–197CrossRefPubMedGoogle Scholar
  59. 59.
    Hamacher M, Meyer HE (2005) HUPO Brain Proteome Project: aims and needs in proteomics. Expert Rev Proteomics 2:1–3CrossRefPubMedGoogle Scholar
  60. 60.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207CrossRefPubMedGoogle Scholar
  61. 61.
    Portelius E, Gustavsson MK, Zetterberg H, Andreasson U, Blennow K (2012) Evaluation of the performance of novel Aβ isoforms as theragnostic markers in Alzheimer’s disease: from the cell to the patient. Neurodegener Dis 10:138–140CrossRefPubMedGoogle Scholar
  62. 62.
    Portelius E, Price E, Brinkmalm G, Stiteler M, Olsson M, Persson R, Westman-Brinkmalm A, Zetterberg H, Simon AJ, Blennow K (2011) A novel pathway for amyloid precursor protein processing. Neurobiol Aging 32:1090–1098CrossRefPubMedGoogle Scholar
  63. 63.
    Perrin RJ, Craig-Schapiro R, Malone JP, Shah AR, Gilmore P, Davis AE, Roe CM, Peskind ER, Li G, Galasko DR, Clark CM, Quinn JF, Kaye JA, Morris JC, Holtzman DM, Townsend RR, Fagan AM (2011) Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer’s disease. PLoS One 6:e16032PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Craig-Schapiro R, Kuhn M, Xiong C, Pickering EH, Liu J, Misko TP, Perrin RJ, Bales KR, Soares H, Fagan AM, Holtzman DM (2011) Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer’s disease diagnosis and prognosis. PLoS One 6:e18850PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Portelius E, Dean RA, Gustavsson MK, Andreasson U, Zetterberg H, Siemers E, Blennow K (2010) A novel Abeta isoform pattern in CSF reflects gamma-secretase inhibition in Alzheimer disease. Alzheimers Res Ther 2:7PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Albertini V, Bruno A, Paterlini A, Lista S, Benussi L, Cereda C, Binetti G, Ghidoni R (2010) Optimization protocol for amyloid-β peptides detection in human cerebrospinal fluid using SELDI TOF MS. Proteomics Clin Appl 4:352–357CrossRefPubMedGoogle Scholar
  67. 67.
    Portelius E, Brinkmalm G, Tran AJ, Zetterberg H, Westman-Brinkmalm A, Blennow K (2009) Identification of novel APP/Abeta isoforms in human cerebrospinal fluid. Neurodegener Dis 6:87–94CrossRefPubMedGoogle Scholar
  68. 68.
    Simonsen AH, McGuire J, Podust VN, Davies H, Minthon L, Skoog I, Andreasen N, Wallin A, Waldemar G, Blennow K (2008) Identification of a novel panel of cerebrospinal fluid biomarkers for Alzheimer’s disease. Neurobiol Aging 29:961–968CrossRefPubMedGoogle Scholar
  69. 69.
    Simonsen AH, McGuire J, Hansson O, Zetterberg H, Podust VN, Davies HA, Waldemar G, Minthon L, Blennow K (2007) Novel panel of cerebrospinal fluid biomarkers for the prediction of progression to Alzheimer dementia in patients with mild cognitive impairment. Arch Neurol 64:366–370CrossRefPubMedGoogle Scholar
  70. 70.
    Simonsen AH, McGuire J, Podust VN, Hagnelius NO, Nilsson TK, Kapaki E, Vassilopoulos D, Waldemar G (2007) A novel panel of cerebrospinal fluid biomarkers for the differential diagnosis of Alzheimer’s disease versus normal aging and frontotemporal dementia. Dement Geriatr Cogn Disord 24:434–440CrossRefPubMedGoogle Scholar
  71. 71.
    Finehout EJ, Franck Z, Choe LH, Relkin N, Lee KH (2007) Cerebrospinal fluid proteomic biomarkers for Alzheimer’s disease. Ann Neurol 61:120–129CrossRefPubMedGoogle Scholar
  72. 72.
    Portelius E, Tran AJ, Andreasson U, Persson R, Brinkmalm G, Zetterberg H, Blennow K, Westman-Brinkmalm A (2007) Characterization of amyloid beta peptides in cerebrospinal fluid by an automated immunoprecipitation procedure followed by mass spectrometry. J Proteome Res 6:4433–4439CrossRefPubMedGoogle Scholar
  73. 73.
    Hu Y, Hosseini A, Kauwe JS, Gross J, Cairns NJ, Goate AM, Fagan AM, Townsend RR, Holtzman DM (2007) Identification and validation of novel CSF biomarkers for early stages of Alzheimer’s disease. Proteomics Clin Appl 1:1373–1384CrossRefPubMedGoogle Scholar
  74. 74.
    Portelius E, Zetterberg H, Andreasson U, Brinkmalm G, Andreasen N, Wallin A, Westman-Brinkmalm A, Blennow K (2006) An Alzheimer’s disease-specific beta-amyloid fragment signature in cerebrospinal fluid. Neurosci Lett 409:215–219CrossRefPubMedGoogle Scholar
  75. 75.
    Portelius E, Westman-Brinkmalm A, Zetterberg H, Blennow K (2006) Determination of beta-amyloid peptide signatures in cerebrospinal fluid using immunoprecipitation-mass spectrometry. J Proteome Res 5:1010–1016CrossRefPubMedGoogle Scholar
  76. 76.
    Abdi F, Quinn JF, Jankovic J, McIntosh M, Leverenz JB, Peskind E, Nixon R, Nutt J, Chung K, Zabetian C, Samii A, Lin M, Hattan S, Pan C, Wang Y, Jin J, Zhu D, Li GJ, Liu Y, Waichunas D, Montine TJ, Zhang J (2006) Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J Alzheimers Dis 9:293–348PubMedGoogle Scholar
  77. 77.
    Selle H, Lamerz J, Buerger K, Dessauer A, Hager K, Hampel H, Karl J, Kellmann M, Lannfelt L, Louhija J, Riepe M, Rollinger W, Tumani H, Schrader M, Zucht HD (2005) Identification of novel biomarker candidates by differential peptidomics analysis of cerebrospinal fluid in Alzheimer’s disease. Comb Chem High Throughput Screen 8:801–806CrossRefPubMedGoogle Scholar
  78. 78.
    Zhang J, Goodlett DR, Quinn JF, Peskind E, Kaye JA, Zhou Y, Pan C, Yi E, Eng J, Wang Q, Aebersold RH, Montine TJ (2005) Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer disease. J Alzheimers Dis 7:125–133PubMedGoogle Scholar
  79. 79.
    Carrette O, Demalte I, Scherl A, Yalkinoglu O, Corthals G, Burkhard P, Hochstrasser DF, Sanchez JC (2003) A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease. Proteomics 3:1486–1494CrossRefPubMedGoogle Scholar
  80. 80.
    Puchades M, Hansson SF, Nilsson CL, Andreasen N, Blennow K, Davidsson P (2003) Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res Mol Brain Res 118:140–146CrossRefPubMedGoogle Scholar
  81. 81.
    Davidsson P, Westman-Brinkmalm A, Nilsson CL, Lindbjer M, Paulson L, Andreasen N, Sjögren M, Blennow K (2002) Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. NeuroReport 13:611–615CrossRefPubMedGoogle Scholar
  82. 82.
    Pan S, Zhu D, Quinn JF, Peskind ER, Montine TJ, Lin B, Goodlett DR, Taylor G, Eng J, Zhang J (2007) A combined dataset of human cerebrospinal fluid proteins identified by multi-dimensional chromatography and tandem mass spectrometry. Proteomics 7:469–473CrossRefPubMedGoogle Scholar
  83. 83.
    Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24:971–983CrossRefPubMedGoogle Scholar
  84. 84.
    Fagan AM, Perrin RJ (2012) Upcoming candidate cerebrospinal fluid biomarkers of Alzheimer’s disease. Biomark Med 6:455–476PubMedCentralCrossRefPubMedGoogle Scholar
  85. 85.
    Dumas ME, Davidovic L (2013) Metabolic phenotyping and systems biology approaches to understanding neurological disorders. F1000Prime Rep 5:18PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Veenstra TD (2012) Metabolomics: the final frontier? Genome Med 4:40PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    Nicholson JK, Holmes E, Kinross JM, Darzi AW, Takats Z, Lindon JC (2012) Metabolic phenotyping in clinical and surgical environments. Nature 491:384–392CrossRefPubMedGoogle Scholar
  88. 88.
    Mandal R, Guo AC, Chaudhary KK, Liu P, Yallou FS, Dong E, Aziat F, Wishart DS (2012) Multi-platform characterization of the human cerebrospinal fluid metabolome: a comprehensive and quantitative update. Genome Med 4:38PubMedCentralCrossRefPubMedGoogle Scholar
  89. 89.
    Trushina E, Mielke MM (2013) Recent advances in the application of metabolomics to Alzheimer’s disease. Biochim Biophys Acta. doi: 10.1016/j.bbadis.2013.06.014 PubMedCentralPubMedGoogle Scholar
  90. 90.
    Trushina E, Dutta T, Persson XM, Mielke MM, Petersen RC (2013) Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics. PLoS One 8:e63644PubMedCentralCrossRefPubMedGoogle Scholar
  91. 91.
    Kaddurah-Daouk R, Zhu H, Sharma S, Bogdanov M, Rozen SG, Matson W, Oki NO, Motsinger-Reif AA, Churchill E, Lei Z, Appleby D, Kling MA, Trojanowski JQ, Doraiswamy PM, Arnold SE, Pharmacometabolomics Research Network (2013) Alterations in metabolic pathways and networks in Alzheimer’s disease. Transl Psychiatry 3:e244PubMedCentralCrossRefPubMedGoogle Scholar
  92. 92.
    Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, Hampel H, Kastler J, Senn H (2012) Metabolite profiling of Alzheimer’s disease cerebrospinal fluid. PLoS One 7:e31501PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Kaddurah-Daouk R, Rozen S, Matson W, Han X, Hulette CM, Burke JR, Doraiswamy PM, Welsh-Bohmer KA (2011) Metabolomic changes in autopsy-confirmed Alzheimer’s disease. Alzheimers Dement 7:309–317PubMedCentralCrossRefPubMedGoogle Scholar
  94. 94.
    Wenk MR (2010) Lipidomics: new tools and applications. Cell 143:888–895CrossRefPubMedGoogle Scholar
  95. 95.
    Astarita G, Piomelli D (2011) Towards a whole-body systems [multi-organ] lipidomics in Alzheimer’s disease. Prostaglandins Leukot Essent Fatty Acids 85:197–203PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Simone Lista
    • 1
    • 2
  • Henrik Zetterberg
    • 3
    • 4
  • Bruno Dubois
    • 1
  • Kaj Blennow
    • 3
  • Harald Hampel
    • 1
    • 2
  1. 1.Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Pavillon François Lhermitte, Hôpital de la SalpêtrièreUniversité Pierre et Marie CurieParisFrance
  2. 2.AXA Research Fund and Pierre and Marie Curie University (UPMC) ChairParisFrance
  3. 3.Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
  4. 4.University College London Institute of NeurologyLondonUK

Personalised recommendations