Journal of Neurology

, Volume 262, Issue 1, pp 1–6 | Cite as

MRI measures of neurodegeneration in multiple sclerosis: implications for disability, disease monitoring, and treatment

  • Massimo Filippi


Magnetic resonance imaging (MRI) techniques, such as T2-weighted and gadolinium-enhanced T1-weighted sequences, have long been used to diagnose multiple sclerosis (MS). However, these methods are limited in their ability to depict underlying disease pathology. A PubMed literature search was conducted to identify the publications discussing MRI in MS from 2010 to 2013, using the medical subject heading terms: “multiple sclerosis” and “grey/gray matter”, “brain atrophy”, “grey/gray matter atrophy”, “normal appearing white matter,” and “cortical lesions.” Recent proceedings of conferences on MRI were also used to identify emerging techniques. MRI-derived metrics can assess the microstructural, metabolic, and functional changes that occur in newly formed lesions and allow further characterization of diffuse degeneration in different central nervous system compartments across MS phenotypes. Advanced imaging techniques aim to complement our understanding of MS disease pathophysiology, which may facilitate the identification of markers that could be used to predict the clinical outcomes of agents in development.


Multiple sclerosis MRI Neurodegeneration Normal-appearing white matter Grey matter atrophy 



The author would like to thank Lisa Grauer, MSc, from Chameleon Communications International, who provided editorial support with funding from Teva Pharmaceuticals Industries Ltd., Petach Tikva, Israel.

Conflicts of interest

Massimo Filippi serves on scientific advisory boards for Teva Pharmaceutical Industries Ltd.; has received funding for travel from Bayer Schering Pharma, Biogen Idec, Merck Serono, and Teva Pharmaceutical Industries Ltd.; serves as a consultant to Bayer Schering Pharma, Biogen Idec, Merck Serono, Novartis, Pepgen Corporation, and Teva Pharmaceutical Industries Ltd.; serves on speakers’ bureaus for Bayer Schering Pharma, Biogen Idec, Merck Serono, and Teva Pharmaceutical Industries Ltd.; and receives research support from Bayer Schering Pharma, Biogen Idec, Novartis, Merck Serono, Teva Pharmaceutical Industries Ltd., Fondazione Italiana Sclerosi Multipla, the Italian Ministry of Health, CurePSP, and the Gossweiler Foundation (Switzerland).


  1. 1.
    Geurts JJ, Calabrese M, Fisher E, Rudick RA (2012) Measurement and clinical effect of grey matter pathology in multiple sclerosis. Lancet Neurol 11:1082–1092CrossRefPubMedGoogle Scholar
  2. 2.
    Moll NM, Rietsch AM, Thomas S, Ransohoff AJ, Lee JC, Fox R, Chang A, Ransohoff RM, Fisher E (2011) Multiple sclerosis normal-appearing white matter: pathology-imaging correlations. Ann Neurol 70:764–773PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Filippi M, Agosta F, Rocca MA (2007) Regional assessment of brain atrophy: a novel approach to achieve a more complete picture of tissue damage associated with central nervous system disorders? Am J Neuroradiol 28:260–261PubMedGoogle Scholar
  4. 4.
    Khaleeli Z, Sastre-Garriga J, Ciccarelli O, Miller DH, Thompson AJ (2007) Magnetisation transfer ratio in the normal appearing white matter predicts progression of disability over 1 year in early primary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 78:1076–1082PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Fisniku LK, Chard DT, Jackson JS, Anderson VM, Altmann DR, Miszkiel KA, Thompson AJ, Miller DH (2008) Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann Neurol 64:247–254CrossRefPubMedGoogle Scholar
  6. 6.
    Calabrese M, De Stefano N, Atzori M, Bernardi V, Mattisi I, Barachino L, Morra A, Rinaldi L, Romualdi C, Perini P, Battistin L, Gallo P (2007) Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Arch Neurol 64:1416–1422CrossRefPubMedGoogle Scholar
  7. 7.
    Inglese M, Oesingmann N, Casaccia P, Fleysher L (2011) Progressive multiple sclerosis and gray matter pathology: an MRI perspective. Mt Sinai J Med 78:258–267PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Filippi M, Agosta F, Spinelli EG, Rocca MA (2013) Imaging resting state brain function in multiple sclerosis. J Neurol 260:1709–1713CrossRefPubMedGoogle Scholar
  9. 9.
    Iannucci G, Tortorella C, Rovaris M, Sormani MP, Comi G, Filippi M (2000) Prognostic value of MR and magnetization transfer imaging findings in patients with clinically isolated syndromes suggestive of multiple sclerosis at presentation. Am J Neuroradiol 21:1034–1038PubMedGoogle Scholar
  10. 10.
    Filippi M, Rovaris M, Rocca MA, Sormani MP, Wolinsky JS, Comi G (2001) Glatiramer acetate reduces the proportion of new MS lesions evolving into “black holes”. Neurology 57:731–733CrossRefPubMedGoogle Scholar
  11. 11.
    Sbardella E, Tona F, Petsas N, Pantano P (2013) DTI measurements in multiple sclerosis: evaluation of brain damage and clinical implications. Mult Scler Int 2013:671730PubMedCentralPubMedGoogle Scholar
  12. 12.
    Gallo A, Rovaris M, Riva R, Ghezzi A, Benedetti B, Martinelli V, Falini A, Comi G, Filippi M (2005) Diffusion-tensor magnetic resonance imaging detects normal-appearing white matter damage unrelated to short-term disease activity in patients at the earliest clinical stage of multiple sclerosis. Arch Neurol 62:803–808CrossRefPubMedGoogle Scholar
  13. 13.
    De Stefano N, Narayanan S, Francis GS, Arnaoutelis R, Tartaglia MC, Antel JP, Matthews PM, Arnold DL (2001) Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 58:65–70CrossRefPubMedGoogle Scholar
  14. 14.
    Narayanan S, De Stefano N, Francis GS, Arnaoutelis R, Caramanos Z, Collins DL, Pelletier D, Arnason BGW, Antel JP, Arnold DL (2001) Axonal metabolic recovery in multiple sclerosis patients treated with interferon beta-1b. J Neurol 248:979–986CrossRefPubMedGoogle Scholar
  15. 15.
    Mellergard J, Tisell A, Dahlqvist LO, Blystad I, Landtblom AM, Blennow K, Olsson B, Dahle C, Ernerudh J, Lundberg P, Vrethem M (2012) Association between change in normal appearing white matter metabolites and intrathecal inflammation in natalizumab-treated multiple sclerosis. PLoS One 7:e44739PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Paty DW, Li DK (2001) Interferon beta-lb is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. 1993 [classical article]. Neurology 57:S10–S15PubMedGoogle Scholar
  17. 17.
    Khan O, Shen Y, Caon C, Bao F, Ching W, Reznar M, Buccheister A, Hu J, Latif Z, Tselis A, Lisak R (2005) Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate in relapsing-remitting multiple sclerosis. Mult Scler 11:646–651CrossRefPubMedGoogle Scholar
  18. 18.
    Khan O, Caon C, Zak I et al (2008) Randomized, prospective, rater-blinded, four-year, pilot study to compare the effect of daily versus every-other-day glatiramer acetate 20 mg subcutaneous injections in relapsing-remitting multiple sclerosis. Mult Scler 14:902Google Scholar
  19. 19.
    Rocca MA, Valsasina P, Damjanovic D, Horsfield MA, Mesaros S, Stosic-Opincal T, Drulovic J, Filippi M (2013) Voxel-wise mapping of cervical cord damage in multiple sclerosis patients with different clinical phenotypes. J Neurol Neurosurg Psychiatry 84:35–41CrossRefPubMedGoogle Scholar
  20. 20.
    Losseff N, Kingsley D, McDonald W, Miller D, Thompson A (1996) Clinical and magnetic resonance imaging predictors of disability in primary and secondary progressive multiple sclerosis. Mult Scler 1:218–222PubMedGoogle Scholar
  21. 21.
    Horsfield MA, Sala S, Neema M, Absinta M, Bakshi A, Sormani MP, Rocca MA, Bakshi R, Filippi M (2010) Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: application in multiple sclerosis. NeuroImage 50:446–455PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Rocca M, Horsfield M, Sala S, Copetti M, Valsasina P, Mesaros S, Martinelli V, Caputo D, Stosic-Opincal T, Drulovic J, Comi G, Filippi M (2011) A multicenter assessment of cervical cord atrophy among MS clinical phenotypes. Neurology 76:2096–2102CrossRefPubMedGoogle Scholar
  23. 23.
    Valsasina P, Rocca MA, Horsfield MA, Absinta M, Messina R, Caputo D, Comi G, Filippi M (2013) Regional cervical cord atrophy and disability in multiple sclerosis: a voxel-based analysis. Radiology 266:853–861CrossRefPubMedGoogle Scholar
  24. 24.
    Miller DH, Barkhof F, Frank JA, Parker GJM, Thompson AJ (2002) Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 125:1676–1695CrossRefPubMedGoogle Scholar
  25. 25.
    Bermel RA, Bakshi R (2006) The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol 5:158–170CrossRefPubMedGoogle Scholar
  26. 26.
    DeStefano N, Giorgio A, Battaglini M, Rovaris M, Sormani M, Barkhof F, Korteweg T, Enzinger C, Fazekas F, Calabrese M, Dinacci D, Tedeschi G, Gass A, Montalban X, Rovira A, Thompson A, Comi G, Miller D, Filippi M (2010) Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology 74:1868–1876CrossRefGoogle Scholar
  27. 27.
    Durand-Dubief F, Belaroussi B, Armspach JP, Dufour M, Roggerone S, Vukusic S, Hannoun S, Sappey-Marinier D, Confavreux C, Cotton F (2012) Reliability of longitudinal brain volume loss measurements between 2 sites in patients with multiple sclerosis: comparison of 7 quantification techniques. Am J Neuroradiol 33:1918–1924CrossRefPubMedGoogle Scholar
  28. 28.
    Khan O, Bao F, Shah M, Caon C, Tselis A, Bailey R, Silverman B, Zak I (2012) Effect of disease-modifying therapies on brain volume in relapsing-remitting multiple sclerosis: results of a five-year brain MRI study. J Neurol Sci 312:7–12CrossRefPubMedGoogle Scholar
  29. 29.
    Portaccio E, Stromillo ML, Goretti B, Hakiki B, Giorgio A, Rossi F, De Leucio A, De Stefano N, Amato MP (2013) Natalizumab may reduce cognitive changes and brain atrophy rate in relapsing-remitting multiple sclerosis: a prospective, non-randomized pilot study. Eur J Neurol 20:986–990CrossRefPubMedGoogle Scholar
  30. 30.
    Radue EW, O’Connor P, Polman CH, Hohlfeld R, Calabresi P, Selmaj K, Mueller-Lenke N, Agoropoulou C, Holdbrook F, de Vera A, Zhang-Auberson L, Francis G, Burtin P, Kappos L (2012) Impact of fingolimod therapy on magnetic resonance imaging outcomes in patients with multiple sclerosis. Arch Neurol 69:1259–1269CrossRefPubMedGoogle Scholar
  31. 31.
    Comi G, Jeffery D, Kappos L, Montalban X, Boyko A, Rocca MA, Filippi M (2012) Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J Med 366:1000–1009CrossRefPubMedGoogle Scholar
  32. 32.
    Lansley J, Mataix-Cols D, Grau M, Radua J, Sastre-Garriga J (2013) Localized grey matter atrophy in multiple sclerosis: a meta-analysis of voxel-based morphometry studies and associations with functional disability. Neurosci Biobehav Rev 37:819–830CrossRefPubMedGoogle Scholar
  33. 33.
    Audoin B, Zaaraoui W, Reuter F, Rico A, Malikova I, Confort-Gouny S, Cozzone PJ, Pelletier J, Ranjeva JP (2010) Atrophy mainly affects the limbic system and the deep grey matter at the first stage of multiple sclerosis. J Neurol Neurosurg Psychiatry 81:690–695CrossRefPubMedGoogle Scholar
  34. 34.
    Fisher E, Lee JC, Nakamura K, Rudick RA (2008) Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 64:255–265CrossRefPubMedGoogle Scholar
  35. 35.
    Nakamura K, Fisher E (2009) Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients. NeuroImage 44:769–776PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Vrenken H, Jenkinson M, Horsfield MA, Battaglini M, van Schijndel RA, Rostrup E, Geurts JJ, Fisher E, Zijdenbos A, Ashburner J, Miller DH, Filippi M, Fazekas F, Rovaris M, Rovira A, Barkhof F, De Stefano N (2012) Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis. J Neurol 260:2458–2471PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Ceccarelli A, Jackson JS, Tauhid S, Arora A, Gorky J, Dell’Oglio E, Bakshi A, Chitnis T, Khoury SJ, Weiner HL, Guttmann CR, Bakshi R, Neema M (2012) The impact of lesion in-painting and registration methods on voxel-based morphometry in detecting regional cerebral gray matter atrophy in multiple sclerosis. Am J Neuroradiol 33:1579–1585PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Riccitelli G, Rocca MA, Forn C, Colombo B, Comi G, Filippi M (2011) Voxelwise assessment of the regional distribution of damage in the brains of patients with multiple sclerosis and fatigue. Am J Neuroradiol 32:874–879CrossRefPubMedGoogle Scholar
  39. 39.
    Benedict RH, Hulst HE, Bergsland N, Schoonheim MM, Dwyer MG, Weinstock-Guttman B, Geurts JJ, Zivadinov R (2013) Clinical significance of atrophy and white matter mean diffusivity within the thalamus of multiple sclerosis patients. Mult Scler 19:1478–1484CrossRefPubMedGoogle Scholar
  40. 40.
    Bendfeldt K, Egger H, Nichols TE, Loetscher P, Denier N, Kuster P, Traud S, Mueller-Lenke N, Naegelin Y, Gass A, Kappos L, Radue EW, Borgwardt SJ (2010) Effect of immunomodulatory medication on regional gray matter loss in relapsing-remitting multiple sclerosis––a longitudinal MRI study. Brain Res 1325:174–182CrossRefPubMedGoogle Scholar
  41. 41.
    Filippi M, Rocca MA, Pagani E, De Stefano N, Jeffery D, Kappos L, Montalban X, Boyko AN, Comi G (2013) Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J Neurol Neurosurg. doi: 10.1136/jnnp-2013-306132 Google Scholar
  42. 42.
    Geurts JJ, Pouwels PJ, Uitdehaag BM, Polman CH, Barkhof F, Castelijns JA (2005) Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 236:254–260CrossRefPubMedGoogle Scholar
  43. 43.
    Filippi M, Rocca MA, Benedict RH, DeLuca J, Geurts JJ, Rombouts SA, Ron M, Comi G (2010) The contribution of MRI in assessing cognitive impairment in multiple sclerosis. Neurology 75:2121–2128PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Rinaldi F, Calabrese M, Seppi D, Puthenparampil M, Perini P, Gallo P (2012) Natalizumab strongly suppresses cortical pathology in relapsing-remitting multiple sclerosis. Mult Scler 18:1760–1767CrossRefPubMedGoogle Scholar
  45. 45.
    Nelson F, Poonawalla AH, Hou P, Huang F, Wolinsky JS, Narayana PA (2007) Improved identification of intracortical lesions in multiple sclerosis with phase-sensitive inversion recovery in combination with fast double inversion recovery MR imaging. Am J Neuroradiol 28:1645–1649CrossRefPubMedGoogle Scholar
  46. 46.
    Nelson F, Poonawalla A, Hou P, Wolinsky J, Narayana P (2008) 3D MPRAGE improves classification of cortical lesions in multiple sclerosis. Mult Scler 14:1214–1219CrossRefPubMedGoogle Scholar
  47. 47.
    Tallantyre EC, Morgan PS, Dixon JE, Al Radaideh A, Brookes MJ, Morris PG, Evangelou N (2010) 3 Tesla and 7 Tesla MRI of multiple sclerosis cortical lesions. J Magn Reson Imaging 32:971–977CrossRefPubMedGoogle Scholar
  48. 48.
    Filippi M, Evangelou N, Kangarlu A, Inglese M, Mainero C, Horsfield MA, Rocca MA (2014) Ultra-high-field MR imaging in multiple sclerosis. J Neurol Neurosurg Psychiatry 85(1):60–66CrossRefPubMedGoogle Scholar
  49. 49.
    Filippi M, Preziosa P, Pagani E, Copetti M, Mesaros S, Colombo B, Horsfield MA, Falini A, Comi G, Lassmann H, Rocca MA (2013) Microstructural magnetic resonance imaging of cortical lesions in multiple sclerosis. Mult Scler 19:418–426CrossRefPubMedGoogle Scholar
  50. 50.
    Filippi M, Riccitelli G, Mattioli F, Capra R, Stampatori C, Pagani E, Valsasina P, Copetti M, Falini A, Comi G, Rocca MA (2012) Multiple sclerosis: effects of cognitive rehabilitation on structural and functional MR imaging measures––an explorative study. Radiology 262:932–940CrossRefPubMedGoogle Scholar
  51. 51.
    Leavitt VM, Wylie GR, Girgis PA, DeLuca J, Chiaravalloti ND (2012) Increased functional connectivity within memory networks following memory rehabilitation in multiple sclerosis. Brain Imaging Behav. doi: 10.1007/s11682-012-9183-2 Google Scholar
  52. 52.
    Sastre-Garriga J, Alonso J, Renom M, Arevalo MJ, Gonzalez I, Galan I, Montalban X, Rovira A (2011) A functional magnetic resonance proof of concept pilot trial of cognitive rehabilitation in multiple sclerosis. Mult Scler 17:457–467CrossRefPubMedGoogle Scholar
  53. 53.
    Sethi V, Yousry TA, Muhlert N, Ron M, Golay X, Wheeler-Kingshott C, Miller DH, Chard DT (2012) Improved detection of cortical MS lesions with phase-sensitive inversion recovery MRI. J Neurol Neurosurg Psychiatry 83:877–882CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Neuroimaging Research Unit, Department of Neurology, San Raffaele Scientific InstituteVita-Salute San Raffaele UniversityMilanItaly

Personalised recommendations