Advertisement

Journal of Neurology

, Volume 261, Issue 5, pp 870–876 | Cite as

Childhood onset tubular aggregate myopathy associated with de novo STIM1 mutations

  • Carola Hedberg
  • Marcello Niceta
  • Fabiana Fattori
  • Björn Lindvall
  • Andrea Ciolfi
  • Adele D’Amico
  • Giorgio Tasca
  • Stefania Petrini
  • Mar Tulinius
  • Marco Tartaglia
  • Anders Oldfors
  • Enrico BertiniEmail author
Original Communication

Abstract

We investigated three unrelated patients with tubular-aggregate myopathy and slowly progressive muscle weakness manifesting in the first years of life. All patients showed type 1 muscle fiber predominance and hypotrophy of type 2 fibers. Tubular aggregates were abundant. In all three patients mutations were identified in the gene STIM1, and the mutations were found to be de novo in all patients. In one of the patients the mutation was identified by exome sequencing. Two patients harbored the previously described mutation c.326A>G p.(His109Arg), while the third patient had a novel mutation c.343A>T p.(Ile115Phe). Taking our series together with previously published cases, the c.326A>G p.(His109Arg) seems to be a hotspot mutation that is characteristically related to early onset muscle weakness.

Keywords

Myopathy Tubular aggregates STIM1 De novo mutation 

Notes

Acknowledgments

Funding was provided from the Italian Ministry of Health Ricerca Finalizzata (to EB, AD, SP, GT and FF), the Italian Ministry of Health Ricerca Corrente (to MN, AC and MT), and the Swedish Research Council (to AO; Proj. No 7122).

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Engel WK (1964) Mitochondrial aggregates in muscle disease. J Histochem Cytochem: Off J Histochem Soc 12:46–48CrossRefGoogle Scholar
  2. 2.
    Schiaffino S (2012) Tubular aggregates in skeletal muscle: just a special type of protein aggregates? Neuromuscul Disord 22:199–207. doi: 10.1016/j.nmd.2011.10.005 CrossRefPubMedGoogle Scholar
  3. 3.
    Funk F, Ceuterick-de Groote C, Martin JJ et al (2013) Morphological spectrum and clinical features of myopathies with tubular aggregates. Histol Histopathol 28:1041–1054PubMedGoogle Scholar
  4. 4.
    Bohm J, Chevessier F, Maues De Paula A et al (2013) Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am J Hum Genet 92:271–278. doi: 10.1016/j.ajhg.2012.12.007 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Tulinius MH, Lundberg A, Oldfors A (1996) Early-onset myopathy with tubular aggregates. Pediatr Neurol 15:68–71CrossRefPubMedGoogle Scholar
  6. 6.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760. doi: 10.1093/bioinformatics/btp324 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. doi: 10.1101/gr.107524.110 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    DePristo MA, Banks E, Poplin R et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498. doi: 10.1038/ng.806 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Cingolani P, Platts A, le Wang L et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80–92. doi: 10.4161/fly.19695 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12CrossRefPubMedGoogle Scholar
  11. 11.
    Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810. doi: 10.1152/physrev.00057.2003 CrossRefPubMedGoogle Scholar
  12. 12.
    Field ML, Khan O, Abbaraju J, Clark JF (2006) Functional compartmentation of glycogen phosphorylase with creatine kinase and Ca2+ ATPase in skeletal muscle. J Theor Biol 238:257–268. doi: 10.1016/j.jtbi.2005.05.017 CrossRefPubMedGoogle Scholar
  13. 13.
    Wanson JC, Drochmans P (1972) Role of the sarcoplasmic reticulum in glycogen metabolism. Binding of phosphorylase, phosphorylase kinase, and primer complexes to the sarcovesicles of rabbit skeletal muscle. J Cell Biol 54:206–224PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Stephenson DG (2011) In pursuit of the glycogen–[Ca2+] connection. J Physiol 589:451. doi: 10.1113/jphysiol.2010.203943 PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Stoward PJ, Pearse AGE (eds) (1991) Histochemistry: theoretical and applied. Enzyme histochemistry, 4th edn, vol 3. Churchill-Livingstone, Edinburgh, xiv + pp1-727Google Scholar
  16. 16.
    Zheng L, Stathopulos PB, Schindl R, Li GY, Romanin C, Ikura M (2011) Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry. Proc Natl Acad Sci USA 108:1337–1342. doi: 10.1073/pnas.1015125108 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Liou J, Kim ML, Heo WD et al (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol: CB 15:1235–1241. doi: 10.1016/j.cub.2005.05.055 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Roos J, DiGregorio PJ, Yeromin AV et al (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445. doi: 10.1083/jcb.200502019 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Zhang SL, Yu Y, Roos J et al (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905. doi: 10.1038/nature04147 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Kiviluoto S, Decuypere JP, De Smedt H, Missiaen L, Parys JB, Bultynck G (2011) STIM1 as a key regulator for Ca2+ homeostasis in skeletal-muscle development and function. Skelet Muscle 1:16. doi: 10.1186/2044-5040-1-16 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Carola Hedberg
    • 1
  • Marcello Niceta
    • 3
  • Fabiana Fattori
    • 3
  • Björn Lindvall
    • 4
  • Andrea Ciolfi
    • 2
  • Adele D’Amico
    • 3
  • Giorgio Tasca
    • 3
  • Stefania Petrini
    • 3
  • Mar Tulinius
    • 5
    • 6
  • Marco Tartaglia
    • 2
  • Anders Oldfors
    • 1
  • Enrico Bertini
    • 3
    Email author
  1. 1.Department of PathologyUniversity of Gothenburg, Sahlgrenska University HospitalGothenburgSweden
  2. 2.Genetics, Istituto Superiore di SanitàRomeItaly
  3. 3.Unit of Neuromuscular Disorders, Laboratory of Molecular MedicineBambino Gesu’ Children’s Research HospitalRomeItaly
  4. 4.Department of Neurology, Muscle CentreÖrebro University HospitalÖrebroSweden
  5. 5.Department of PediatricsUniversity of Gothenburg, The Queen Silvia Children’s HospitalGothenburgSweden
  6. 6.Department of PediatricsUniversity of Gothenburg, Sahlgrenska University HospitalGothenburgSweden

Personalised recommendations