Journal of Neurology

, Volume 261, Issue 1, pp 130–143 | Cite as

Immune cell subtyping in the cerebrospinal fluid of patients with neurological diseases

  • M. C. Kowarik
  • V. Grummel
  • S. Wemlinger
  • D. Buck
  • M. S. Weber
  • A. Berthele
  • B. Hemmer
Original Communication


The analysis of cerebrospinal fluid (CSF) with the assessment of CSF cell counts and proteins is an important method in the diagnostic workup of neurological diseases. As an addition to this standard approach, we here present data on the distribution of CSF immune cell subsets in common neurological diseases, and provide reference values along with cases of rare neurological diseases. CD4+ and CD8+ T cells, the CD4/CD8 ratio, B cells, plasmablasts, monocytes and NK cells in the CSF of 319 patients with inflammatory or non-inflammatory neurological diseases were analysed by seven-color flow cytometry. Diagnoses included headache, idiopathic intracranial hypertension, Guillain–Barré syndrome, multiple sclerosis, Lyme neuroborreliosis, bacterial and viral meningitis, human immunodeficiency virus (HIV) infection, stroke, and CNS malignancies, among others. T cells were the predominant population in the CSF with CD4+ T cells being more prevalent than CD8+ T cells. Mostly in HIV patients, and under other conditions of immunosuppression, CD4+ and CD8+ T cells were significantly altered and the CD4/CD8 ratio reduced. B cells and plasmablasts could hardly be detected in non-inflammatory diseases but were consistently elevated in inflammatory diseases. Monocytes were reduced in neuroinflammation and showed a negative correlation with B cells. NK cells were slightly elevated in neuroinflammation. Both monocytes and NK cells were slightly elevated in CNS malignancies. The analysis of immune cell subsets in the CSF adds valuable information to clinicians and is a promising tool for the differential diagnosis of neurological diseases.


Cerebrospinal fluid Flow cytometry Fluorescence-activated cell sorting Immune cell subsets Neurological diseases 



The “Münchner Studienzentrum” was consulted for statistical analysis. The study was supported by the German Ministry for Education and Research (BMBF, “German Competence Network Multiple Sclerosis” (KKNMS), Control-MS, 01GI0917).

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standards

This study has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Supplementary material

415_2013_7145_MOESM1_ESM.jpg (958 kb)
Supplementary material 1 (JPEG 957 kb)
415_2013_7145_MOESM2_ESM.docx (243 kb)
Supplementary material 2 (DOCX 242 kb)


  1. 1.
    Svenningsson A, Andersen O, Edsbagge M, Stemme S (1995) Lymphocyte phenotype and subset distribution in normal cerebrospinal fluid. J Neuroimmunol 163(1):39–46CrossRefGoogle Scholar
  2. 2.
    de Graaf MT, Smitt PA, Luitwieler RL, van Velzen C, van den Broek PD, Kraan J, Gratama JW (2001) Central memory CD4+ T cells dominate the normal cerebrospinal fluid. Cytom B Clin Cytom 80(1):43–50. doi: 10.1002/cyto.b.20542 Google Scholar
  3. 3.
    Scolozzi R, Boccafogli A, Tola MR, Vicentini L, Camerani A, Degani D, Granieri E, Caniatti L, Paolino E (1992) T-cell phenotypic profiles in the cerebrospinal fluid and peripheral blood of multiple sclerosis patients. J Neurol Sci 108(1):93–98CrossRefPubMedGoogle Scholar
  4. 4.
    Oreja-Guevara C, Sindern E, Raulf-Heimsoth M, Malin JP (1998) Analysis of lymphocyte subpopulations in cerebrospinal fluid and peripheral blood in patients with multiple sclerosis and inflammatory diseases of the nervous system. Acta Neurol Scand 98(5):310–313CrossRefPubMedGoogle Scholar
  5. 5.
    Stinissen P, Vandevyver C, Medaer R, Vandegaer L, Nies J, Tuyls L, Hafler DA, Raus J, Zhang J (1995) Increased frequency of gamma delta T cells in cerebrospinal fluid and peripheral blood of patients with multiple sclerosis. Reactivity, cytotoxicity, and T cell receptor V gene rearrangements. J Immunol 154(9):4883–4894PubMedGoogle Scholar
  6. 6.
    Fritzsching B, Haas J, König F, Kunz P, Fritzsching E, Pöschl J, Krammer PH, Brück W, Suri-Payer E, Wildemann B (2011) Intracerebral human regulatory T cells: analysis of CD4+ CD25+ FOXP3+ T cells in brain lesions and cerebrospinal fluid of multiple sclerosis patients. PLoS ONE 6(3):e17988PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Cepok S, Rosche B, Grummel V, Vogel F, Zhou D, Sayn J, Sommer N, Hartung HP, Hemmer B (2005) Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain 128((Pt 7)):1667–1676CrossRefPubMedGoogle Scholar
  8. 8.
    Cepok S, von Geldern G, Grummel V, Hochgesand S, Celik H, Hartung H, Hemmer B (2006) Accumulation of class switched IgD–IgM- memory B cells in the cerebrospinal fluid during neuroinflammation. J Neuroimmunol 180(1–2):33–39CrossRefPubMedGoogle Scholar
  9. 9.
    Corcione A, Casazza S, Ferretti E, Giunti D, Zappia E, Pistorio A, Gambini C, Mancardi GL, Uccelli A, Pistoia V (2004) Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc Natl Acad Sci USA 101(30):11064–11069PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Holub M, Klucková Z, Beran O, Aster V, Lobovská A (2007) Lymphocyte subset numbers in cerebrospinal fluid: comparison of tick-borne encephalitis and neuroborreliosis. Acta Neurol Scand 106(5):302–308CrossRefGoogle Scholar
  11. 11.
    Cepok S, Zhou D, Vogel F, Rosche B, Grummel V, Sommer N, Hemmer B (2003) The immune response at onset and during recovery from Borrelia burgdorferi meningoradiculitis. Arch Neurol 60(6):849–855CrossRefPubMedGoogle Scholar
  12. 12.
    Bromberg JE, Breems DA, Kraan J, Bikker G, van der Holt B, Smitt PS, van den Bent MJ, van’t Veer M, Gratama JW (2007) CSF flow cytometry greatly improves diagnostic accuracy in CNS hematologic malignancies. Neurology 68(20):1674–1679CrossRefPubMedGoogle Scholar
  13. 13.
    Benevolo G, Stacchini A, Spina M et al (2012) Final results of a multicenter trial addressing role of CSF flow cytometric analysis in NHL patients at high risk for CNS dissemination. Blood 120(16):3222–3228CrossRefPubMedGoogle Scholar
  14. 14.
    Van Dongen JJM, Lhermitte L, Boettcher S et al (2012) EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 26:1908–1975PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Teunissen C, Menge T, Altintas A et al (2013) Consensus definitions and application guidelines for control groups in cerebrospinal fluid biomarker studies in multiple sclerosis. Mult Scler. doi: 10.1177/1352458513488232 PubMedCentralGoogle Scholar
  16. 16.
    Kowarik MC, Pellkofer HL, Cepok S, Korn T, Kümpfel T, Buck D, Hohlfeld R, Berthele A, Hemmer B (2011) Differential effects of fingolimod (FTY720) on immune cells in the CSF and blood of patients with MS. Neurology 76(14):1214–1221CrossRefPubMedGoogle Scholar
  17. 17.
    von Geldern G, Cepok S, Nolting T, Du Y, Grummel V, Adams O, Hartung HP, Arendt G, Hemmer B (2007) CD8 T-cell subsets and viral load in the cerebrospinal fluid of therapy-naive HIV-infected individuals. AIDS 21(2):250–253. Google Scholar
  18. 18.
    Kolber MA (2008) CD38+ CD8+ T-cells negatively correlate with CD4 central memory cells in virally suppressed HIV-1-infected individuals. AIDS 22(15):1937–1941PubMedGoogle Scholar
  19. 19.
    Cepok S, von Geldern G, Nolting T, Grummel V, Srivastava R, Zhou D, Hartung HP, Adams O, Arendt G, Hemmer B (2007) Viral load determines the B-cell response in the cerebrospinal fluid during human immunodeficiency virus infection. Ann Neurol 62(5):458–467CrossRefPubMedGoogle Scholar
  20. 20.
    Rupprecht TA, Kirschning CJ, Popp B, Kastenbauer S, Fingerle V, Pfister HW, Koedel U (2007) Borrelia garinii induces CXCL13 production in human monocytes through Toll-like receptor 2. Infect Immun 75(9):4351–4356PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Kuenzle S, von Büdingen HC, Meier M, Harrer MD, Urich E, Becher B, Goebels N (2007) Pathogen specificity and autoimmunity are distinct features of antigen-driven immune responses in neuroborreliosis. Infect Immun 75(8):3842–3847PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. C. Kowarik
    • 2
  • V. Grummel
    • 1
  • S. Wemlinger
    • 2
  • D. Buck
    • 1
  • M. S. Weber
    • 3
  • A. Berthele
    • 1
  • B. Hemmer
    • 1
    • 4
  1. 1.Department of Neurology, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  2. 2.Department of NeurologyUniversity of Colorado DenverAuroraUSA
  3. 3.Department of NeurologyUniversitätsmedizin GöttingenGöttingenGermany
  4. 4.Munich Cluster for Systems Neurology (SyNergy)MunichGermany

Personalised recommendations