Journal of Neurology

, Volume 260, Issue 11, pp 2876–2883 | Cite as

Analysis of high-voltage electrical spinal cord injury using diffusion tensor imaging

  • Suk Hoon Ohn
  • Deog Young Kim
  • Ji Cheol Shin
  • Seung Min Kim
  • Woo-Kyoung Yoo
  • Seung-Koo Lee
  • Chang-hyun Park
  • Kwang-Ik Jung
  • Ki Un Jang
  • Cheong Hoon Seo
  • Sung Hye Koh
  • Bora Jung
Original Communication

Abstract

The aim of this study was to investigate spinal cord injury (SCI) on the basis of diffusion tensor imaging (DTI) in patients with high-voltage electrical injury. We recruited eight high-voltage electrical injury patients and eight healthy subjects matched for age and sex. DTI and central motor conduction time were acquired in both the patient and control groups. We obtained DTI indices according to the spinal cord levels (from C2 to C7) and cross-section locations (anterior, lateral, and posterior). Fractional anisotrophy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were compared between the two groups; additionally, they were compared in relation to spinal cord level and cross-section location. In the patient group relative to the control group, the FA value decreased and the MD and RD values increased in all of the regions of interest (ROI) with statistical significance (p < 0.05). In the patient group, particularly in the ROIs of the anterior spinal cord compared with the lateral and posterior spinal cords, the FA value decreased with statistical significance (p < 0.05). The DTI indices did not differ by level. DTI revealed the change of diffusion in the spinal cords of patients with high-voltage electrical injury, and corroborated the pathophysiology, myelinopathy and typical anterior spinal cord location of high-voltage electrical SCI already reported in the literature.

Keywords

Electrical injury Spinal cord injury Diffusion tensor imaging Magnetic resonance imaging 

References

  1. 1.
    Arevalo JM, Lorente JA, Balseiro-Gomez J (1999) Spinal cord injury after electrical trauma treated in a burn unit. Burns 25(5):449–452. doi:S0305417998001934 PubMedCrossRefGoogle Scholar
  2. 2.
    Bariar LM, Ahmad I, Aggarwal A, Menon RK (2002) Myelopathy following high voltage electrical injury: a case report. Burns 28(7):699–700. doi:S0305417901001255 PubMedCrossRefGoogle Scholar
  3. 3.
    Kingsly Paul M, Dhanraj P, Gupta A (2008) Recovery after spinal cord injury due to high tension electrical burns: a 5-year experience. Burns 34(6):888–890. doi:10.1016/j.burns.2007.04.013 PubMedCrossRefGoogle Scholar
  4. 4.
    Varghese G, Mani MM, Redford JB (1986) Spinal cord injuries following electrical accidents. Paraplegia 24(3):159–166PubMedCrossRefGoogle Scholar
  5. 5.
    Ko SH, Chun W, Kim HC (2004) Delayed spinal cord injury following electrical burns: a 7-year experience. Burns 30(7):691–695. doi:10.1016/j.burns.2004.03.007 PubMedCrossRefGoogle Scholar
  6. 6.
    Breugem CC, Van Hertum W, Groenevelt F (1999) High voltage electrical injury leading to a delayed onset tetraplegia, with recovery. Ann N Y Acad Sci 888:131–136PubMedCrossRefGoogle Scholar
  7. 7.
    Davidson GS, Deck JH (1988) Delayed myelopathy following lightning strike: a demyelinating process. Acta Neuropathol 77(1):104–108PubMedCrossRefGoogle Scholar
  8. 8.
    Ratnayake B, Emmanuel ER, Walker CC (1996) Neurological sequelae following a high voltage electrical burn. Burns 22(7):574–577. doi:030541799600040X PubMedCrossRefGoogle Scholar
  9. 9.
    Triggs WJ, Owens J, Gilmore RL, Campbell K, Quisling R (1994) Central conduction abnormalities after electrical injury. Muscle Nerve 17(9):1068–1070. doi:10.1002/mus.880170917 PubMedCrossRefGoogle Scholar
  10. 10.
    Clark CA, Werring DJ (2002) Diffusion tensor imaging in spinal cord: methods and applications: a review. NMR Biomed 15(7–8):578–586. doi:10.1002/nbm.788 PubMedCrossRefGoogle Scholar
  11. 11.
    Kara B, Celik A, Karadereler S, Ulusoy L, Ganiyusufoglu K, Onat L, Mutlu A, Ornek I, Sirvanci M, Hamzaoglu A (2011) The role of DTI in early detection of cervical spondylotic myelopathy: a preliminary study with 3-T MRI. Neuroradiology 53(8):609–616. doi:10.1007/s00234-011-0844-4 PubMedCrossRefGoogle Scholar
  12. 12.
    Song T, Chen WJ, Yang B, Zhao HP, Huang JW, Cai MJ, Dong TF, Li TS (2011) Diffusion tensor imaging in the cervical spinal cord. Eur Spine J 20(3):422–428. doi:10.1007/s00586-010-1587-3 PubMedCrossRefGoogle Scholar
  13. 13.
    Nair G, Carew JD, Usher S, Lu D, Hu XP, Benatar M (2010) Diffusion tensor imaging reveals regional differences in the cervical spinal cord in amyotrophic lateral sclerosis. Neuroimage 53(2):576–583. doi:10.1016/j.neuroimage.2010.06.060 PubMedCrossRefGoogle Scholar
  14. 14.
    Waring WP, Biering-Sorensen F, Burns S, Donovan W, Graves D, Jha A, Jones L, Kirshblum S, Marino R, Mulcahey MJ, Reeves R, Scelza WM, Schmidt-Read M, Stein A (2010) 2009 review and revisions of the international standards for the neurological classification of spinal cord injury. J Spinal Cord Med 33(4):346–352PubMedGoogle Scholar
  15. 15.
    Thurnher MM, Law M (2009) Diffusion-weighted imaging, diffusion-tensor imaging, and fiber tractography of the spinal cord. Magn Reson Imaging Clin N Am 17(2):225–244. doi:10.1016/j.mric.2009.02.004 PubMedCrossRefGoogle Scholar
  16. 16.
    Petersen JA, Wilm BJ, von Meyenburg J, Schubert M, Seifert B, Najafi Y, Dietz V, Kollias S (2012) Chronic cervical spinal cord injury: DTI correlates with clinical and electrophysiological measures. J Neurotrauma 29(8):1556–1566. doi:10.1089/neu.2011.2027 PubMedCrossRefGoogle Scholar
  17. 17.
    Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevic MR, Hallett M, Katayama Y, Lucking CH et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91(2):79–92PubMedCrossRefGoogle Scholar
  18. 18.
    Samii A, Luciano CA, Dambrosia JM, Hallett M (1998) Central motor conduction time: reproducibility and discomfort of different methods. Muscle Nerve 21(11):1445–1450. doi:10.1002/(SICI)1097-4598(199811)21:11<1445::AID-MUS12>3.0.CO;2-#Google Scholar
  19. 19.
    Quinby WC, Burke JF, Trelstad RL, Caulfield J (1978) The use of microscopy as a guide to primary excision of high-tension electrical burns. J Trauma 18(6):423–431PubMedCrossRefGoogle Scholar
  20. 20.
    Zelt RG, Daniel RK, Ballard PA, Brissette Y, Heroux P (1988) High-voltage electrical injury: chronic wound evolution. Plast Reconstr Surg 82(6):1027–1041PubMedCrossRefGoogle Scholar
  21. 21.
    Maier SE, Mamata H (2005) Diffusion tensor imaging of the spinal cord. Ann N Y Acad Sci 1064:50–60. doi:10.1196/annals.1340.011 pii: 1064/1/50PubMedCrossRefGoogle Scholar
  22. 22.
    Santillan A, Nacarino V, Greenberg E, Riina HA, Gobin YP, Patsalides A (2012) Vascular anatomy of the spinal cord. J Neurointerv Surg 4(1):67–74. doi:10.1136/neurintsurg-2011-010018 PubMedCrossRefGoogle Scholar
  23. 23.
    Bazley FA, Hu C, Maybhate A, Pourmorteza A, Pashai N, Thakor NV, Kerr CL, All AH (2012) Electrophysiological evaluation of sensory and motor pathways after incomplete unilateral spinal cord contusion. J Neurosurg Spine 16(4):414–423. doi:10.3171/2012.1.SPINE11684 PubMedCrossRefGoogle Scholar
  24. 24.
    Pierpaoli C, Barnett A, Pajevic S, Chen R, Penix LR, Virta A, Basser P (2001) Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage 13(6 Pt 1):1174–1185. doi:10.1006/nimg.2001.0765 PubMedCrossRefGoogle Scholar
  25. 25.
    Thomalla G, Glauche V, Koch MA, Beaulieu C, Weiller C, Rother J (2004) Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. Neuroimage 22(4):1767–1774. doi:10.1016/j.neuroimage.2004.03.041 PubMedCrossRefGoogle Scholar
  26. 26.
    Werring DJ, Toosy AT, Clark CA, Parker GJ, Barker GJ, Miller DH, Thompson AJ (2000) Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. J Neurol Neurosurg Psychiatry 69(2):269–272PubMedCrossRefGoogle Scholar
  27. 27.
    Kleinschmidt-DeMasters BK (1995) Neuropathology of lightning-strike injuries. Semin Neurol 15(4):323–328. doi:10.1055/s-2008-1041039 PubMedCrossRefGoogle Scholar
  28. 28.
    Guleria S, Gupta RK, Saksena S, Chandra A, Srivastava RN, Husain M, Rathore R, Narayana PA (2008) Retrograde Wallerian degeneration of cranial corticospinal tracts in cervical spinal cord injury patients using diffusion tensor imaging. J Neurosci Res 86(10):2271–2280. doi:10.1002/jnr.21664 PubMedCrossRefGoogle Scholar
  29. 29.
    Lin X, Tench CR, Evangelou N, Jaspan T, Constantinescu CS (2004) Measurement of spinal cord atrophy in multiple sclerosis. J Neuroimaging Off J Am Soc Neuroimaging 14(3 Suppl):20S–26S. doi:10.1177/1051228404266265 CrossRefGoogle Scholar
  30. 30.
    Tench CR, Morgan PS, Constantinescu CS (2005) Measurement of cervical spinal cord cross-sectional area by MRI using edge detection and partial volume correction. J Magn Reson Imaging JMRI 21(3):197–203. doi:10.1002/jmri.20253 CrossRefGoogle Scholar
  31. 31.
    Seo CH, Jang KU, Lee BC, Choi IG, Kim JH, Chun W, Jeong JH, Kang TC (2011) Transcranial magnetic stimulation can diagnose electrical burn-induced myelopathy. Burns 37(4):687–691. doi:S0305-4179(11)00045-3 pii: 10.1016/j.burns.2011.01.025PubMedCrossRefGoogle Scholar
  32. 32.
    Saritas EU, Cunningham CH, Lee JH, Han ET, Nishimura DG (2008) DWI of the spinal cord with reduced FOV single-shot EPI. Magn Reson Med 60(2):468–473. doi:10.1002/mrm.21640 PubMedCrossRefGoogle Scholar
  33. 33.
    Zaharchuk G, Saritas EU, Andre JB, Chin CT, Rosenberg J, Brosnan TJ, Shankaranarayan A, Nishimura DG, Fischbein NJ (2011) Reduced field-of-view diffusion imaging of the human spinal cord: comparison with conventional single-shot echo-planar imaging. AJNR Am J Neuroradiol 32(5):813–820. doi:10.3174/ajnr.A2418 PubMedCrossRefGoogle Scholar
  34. 34.
    Ellingson BM, Holly LT (2011) Novel spinal cord imaging. J Neurosurg Spine 15(6):645–647. doi:10.3171/2011.7.spine11479 discussion 647PubMedCrossRefGoogle Scholar
  35. 35.
    Wheeler-Kingshott CA, Hickman SJ, Parker GJ, Ciccarelli O, Symms MR, Miller DH, Barker GJ (2002) Investigating cervical spinal cord structure using axial diffusion tensor imaging. Neuroimage 16(1):93–102. doi:10.1006/nimg.2001.1022 PubMedCrossRefGoogle Scholar
  36. 36.
    Spuentrup E, Buecker A, Koelker C, Guenther RW, Stuber M (2003) Respiratory motion artifact suppression in diffusion-weighted MR imaging of the spine. Eur Radiol 13(2):330–336. doi:10.1007/s00330-002-1603-z PubMedGoogle Scholar
  37. 37.
    Papadakis NG, Smponias T, Berwick J, Mayhew JE (2005) k-space correction of eddy-current-induced distortions in diffusion-weighted echo-planar imaging. Magn Reson Med 53(5):1103–1111. doi:10.1002/mrm.20429 PubMedCrossRefGoogle Scholar
  38. 38.
    Sherman JL, Nassaux PY, Citrin CM (1990) Measurements of the normal cervical spinal cord on MR imaging. AJNR Am J Neuroradiol 11(2):369–372PubMedGoogle Scholar
  39. 39.
    Bosma RL, Stroman PW (2012) Characterization of DTI Indices in the Cervical, Thoracic, and Lumbar Spinal Cord in Healthy Humans. Radiology research and practice 2012:143705. doi:10.1155/2012/143705 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Suk Hoon Ohn
    • 1
    • 2
  • Deog Young Kim
    • 2
  • Ji Cheol Shin
    • 2
  • Seung Min Kim
    • 3
  • Woo-Kyoung Yoo
    • 1
  • Seung-Koo Lee
    • 4
  • Chang-hyun Park
    • 5
  • Kwang-Ik Jung
    • 1
  • Ki Un Jang
    • 6
  • Cheong Hoon Seo
    • 7
  • Sung Hye Koh
    • 8
  • Bora Jung
    • 1
  1. 1.Department of Physical Medicine and RehabilitationHallym University College of MedicineAnyangRepublic of Korea
  2. 2.Department and Research Institute of Rehabilitation MedicineYonsei University College of MedicineSeoulRepublic of Korea
  3. 3.Department of NeurologyYonsei University College of MedicineSeoulRepublic of Korea
  4. 4.Department of RadiologyYonsei University College of MedicineSeoulRepublic of Korea
  5. 5.UCL Institute of NeurologyUniversity College LondonLondonUK
  6. 6.Department of Physical Medicine and RehabilitationHallym University College of MedicineSeoulRepublic of Korea
  7. 7.Department of Physical Medicine and RehabilitationHallym University College of MedicineSeoulRepublic of Korea
  8. 8.Department of RadiologyHallym University College of MedicineGyunggi-doRepublic of Korea

Personalised recommendations