Journal of Neurology

, Volume 260, Issue 9, pp 2370–2379 | Cite as

Widespread neuronal damage and cognitive dysfunction in spinocerebellar ataxia type 3

  • Tátila Martins Lopes
  • Anelyssa D′Abreu
  • Marcondes Cavalcante França Junior
  • Clarissa Lin Yasuda
  • Luiz Eduardo Betting
  • Adriana Bastos Samara
  • Gabriela Castellano
  • Júlio César Somazz
  • Marcio Luiz Figueredo Balthazar
  • Iscia Lopes-Cendes
  • Fernando CendesEmail author
Original Communication


Previous studies demonstrated cognitive impairments in spinocerebellar ataxia type 3 (SCA3/MJD); however, there is no consensus about the cognitive domains affected and the correlation with structural brain abnormalities. We investigated the neuropsychological profile and 3T-MRI findings, including high-resolution T1-images, diffusion tensor imaging and magnetic resonance spectroscopy of 32 patients with SCA3/MJD and 32 age-, gender- and educational level–matched healthy controls. We reviewed patients’ clinical history and CAG repeat length, and performed assessment and rating of ataxia (SARA)-Brazilian version and the neuropsychiatric inventory. Patients presented worse performance in episodic and working memory and Beck inventories (depression and anxiety). SCA3/MJD patients had a reduction of gray matter volume (GM) in the cerebellum, putamen, cingulum, precentral and parietal lobe. A positive correlation was identified between the cognitive findings and GM of temporal, frontal, parietal, culmen and insula. We observed positive correlation between the brainstem′s fractional anisotropy and digit span-forward. The following cerebellar metabolite groups (measured relative to creatine) were reduced in patients: N-acetyl-aspartate (NAA), NAA + N-acetyl-aspartate-glutamate and glutamate + glutamine (Glx). We found a positive correlation between Corsi’s block-tapping task forward with Glx; semantic verbal fluency with phosphorylcholine and glycerophosphorylcholine; digits span-forward with NAA. The cognitive impairments in SCA3/MJD are associated not only with cerebellar and brainstem abnormalities, but also with neuroimaging evidence of diffuse neuronal and axonal dysfunction, particularly in temporal, frontal, parietal and insular areas.


Spinocerebellar ataxia type 3 Cognitive deficits Voxel-based morphometry Diffusion tensor imaging Magnetic resonance spectroscopy 



This study was supported by the Fundação de Amparo à Pesquisa de São Paulo (FAPESP) and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), Brazil. We would like to thank the patients and the healthier volunteers for participating in this study.

Conflicts of interest


Ethical standard

This study was approved by the ethics committee of the Faculty of Medical Sciences of the State University of Campinas (FCM-UNICAMP).

Supplementary material

415_2013_6998_MOESM1_ESM.tif (528 kb)
Supplementary material 1 Statistical maps of positive correlation between gray matter and the cognitive findings; a gray matter (GM) areas correlated with Rey Auditory Verbal Learning Test (RAVLT)-coding; b GM areas correlated with RAVLT-delayed recall; c GM areas correlated with RAVLT-recognition; d GM areas correlated with Raven′s progressive matrices; e GM correlated with Corsi block tapping task; f GM correlated with Digits span- forward; g GM correlated with semantic verbal fluency. (TIFF 527 kb)
415_2013_6998_MOESM2_ESM.tif (343 kb)
Supplementary material 2 Positive correlations areas between the cognitive findings and gray matter areas; a gray matter (GM) areas correlated with Rey Auditory Verbal Learning Test (RAVLT)-coding; b GM areas correlated with RAVLT-delayed recall; c GM areas correlated with RAVLT-recognition; d GM areas correlated with Raven′s progressive matrices; e GM correlated with Corsi block tapping task; f GM correlated with Digits span-forward; g GM correlated with semantic verbal fluency. Color bars represent the t value. (TIFF 342 kb)
415_2013_6998_MOESM3_ESM.tif (261 kb)
Supplementary material 3 Sample spectra from a a SCA3 patient and b a control. Observe the N-Acetylaspartate (NAA) peak at 2.0 PPM. (TIFF 261 kb)


  1. 1.
    Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S et al (1994) CAG expansions in a novel gene for Machado–Joseph disease at chromosome 14q32.1. Nat Genet 8:221–228PubMedCrossRefGoogle Scholar
  2. 2.
    Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579PubMedCrossRefGoogle Scholar
  3. 3.
    Rub U, Brunt ER, Deller T (2008) New insights into the pathoanatomy of spinocerebellar ataxia type 3/Machado–Joseph disease. Curr Opin Neurol 21:111–116PubMedCrossRefGoogle Scholar
  4. 4.
    Tokumaru AM, Kamakura K, Maki T, Murayama S, Sakata I, Kaji T et al (2003) Magnetic resonance imaging findings of Machado–Joseph disease: histopathologic correlation. J Comput Assist Tomogr 27:241–248PubMedCrossRefGoogle Scholar
  5. 5.
    Murata Y, Yamaguchi S, Kawakami H, Imon Y, Maruyama H, Sakai T et al (1998) Characteristic magnetic resonance imaging findings in Machado–Joseph disease. Arch Neurol 55:33–37PubMedCrossRefGoogle Scholar
  6. 6.
    D’Abreu A, Franca MC Jr, Yasuda CL, Campos BA, Lopes-Cendes I, Cendes F (2012) Neocortical atrophy in Machado–Joseph disease: a longitudinal neuroimaging study. J Neuroimaging 22:285–291PubMedCrossRefGoogle Scholar
  7. 7.
    D’Abreu A, Franca M Jr, Appenzeller S, Lopes-Cendes I, Cendes F (2009) Axonal dysfunction in the deep white matter in Machado–Joseph disease. J Neuroimaging 19:9–12PubMedCrossRefGoogle Scholar
  8. 8.
    Radvany J, Camargo CH, Costa ZM, Fonseca NC, Nascimento ED (1993) Machado–Joseph disease of Azorean ancestry in Brazil: the Catarina kindred. Neurological, neuroimaging, psychiatric and neuropsychological findings in the largest known family, the “Catarina” kindred. Arq Neuropsiquiatr 51:21–30PubMedCrossRefGoogle Scholar
  9. 9.
    Maruff P, Tyler P, Burt T, Currie B, Burns C, Currie J (1996) Cognitive deficits in Machado–Joseph disease. Ann Neurol 40:421–427PubMedCrossRefGoogle Scholar
  10. 10.
    Zawacki TM, Grace J, Friedman JH, Sudarsky L (2002) Executive and emotional dysfunction in Machado–Joseph disease. Mov Disord 17:1004–1010PubMedCrossRefGoogle Scholar
  11. 11.
    Burk K, Globas C, Bosch S, Klockgether T, Zuhlke C, Daum I et al (2003) Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol 250:207–211PubMedCrossRefGoogle Scholar
  12. 12.
    Kawai Y, Takeda A, Abe Y, Washimi Y, Tanaka F, Sobue G (2004) Cognitive impairments in Machado–Joseph disease. Arch Neurol 61:1757–1760PubMedCrossRefGoogle Scholar
  13. 13.
    Garrard P, Martin NH, Giunti P, Cipolotti L (2008) Cognitive and social cognitive functioning in spinocerebellar ataxia: a preliminary characterization. J Neurol 255:398–405PubMedCrossRefGoogle Scholar
  14. 14.
    Klinke I, Minnerop M, Schmitz-Hubsch T, Hendriks M, Klockgether T, Wullner U et al (2010) Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum 9:433–442PubMedCrossRefGoogle Scholar
  15. 15.
    Braga-Neto P, Dutra LA, Pedroso JL, Felicio AC, Alessi H, Santos-Galduroz RF et al (2012) Cognitive deficits in Machado–Joseph disease correlate with hypoperfusion of visual system areas. Cerebellum 11:1037–1044PubMedCrossRefGoogle Scholar
  16. 16.
    Braga-Neto P, Pedroso JL, Alessi H, Dutra LA, Felicio AC, Minett T et al (2012) Cerebellar cognitive affective syndrome in Machado Joseph disease: core clinical features. Cerebellum 11:549–556PubMedCrossRefGoogle Scholar
  17. 17.
    Braga-Neto P, Godeiro-Junior C, Dutra LA, Pedroso JL, Barsottini OG (2010) Translation and validation into Brazilian version of the Scale of the Assessment and Rating of Ataxia (SARA). Arq Neuropsiquiatr 68:228–230PubMedCrossRefGoogle Scholar
  18. 18.
    Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J (1994) The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology 44:2308–2314PubMedCrossRefGoogle Scholar
  19. 19.
    Malloy-Diniz LF, Lasmar VA, Gazinelli Lde S, Fuentes D, Salgado JV (2007) The Rey auditory-verbal learning test: applicability for the Brazilian elderly population. Rev Bras Psiquiatr 29:324–329PubMedCrossRefGoogle Scholar
  20. 20.
    Raven JC (2003) Teste das Matrizes Progressivas—Escala Geral (Séries A, B, C, D e E). CEPA, Rio de JaneiroGoogle Scholar
  21. 21.
    Lezak MD (1995) Neuropsychological assessment. Oxford University Press, OxfordGoogle Scholar
  22. 22.
    Nascimento E (2004) Escala de Inteligência Wechsler para adultos: Adaptação e padronização de uma amostra brasileira. Casa do Psicólogo, São PauloGoogle Scholar
  23. 23.
    Wechsler D (1987) Wechsler memory scale—revised. The Psychological Corporation, San AntonioGoogle Scholar
  24. 24.
    Santos FH, Bueno OF (2003) Validation of the Brazilian children’s test of pseudoword repetition in Portuguese speakers aged 4 to 10 years. Braz J Med Biol Res 36:1533–1547PubMedGoogle Scholar
  25. 25.
    Kaplan EF, Weintraub S (1983) The Boston naming test. Lea & Febiger, PhiladelphiaGoogle Scholar
  26. 26.
    Hooper HE (1983) Hooper visual organization test (VOT). Western Psychological Services, Los AngelesGoogle Scholar
  27. 27.
    Cunha JA (2005) Teste Wisconsin de classificação de cartas. Casa do Psicólogo, São PauloGoogle Scholar
  28. 28.
    Beck AT (1993) Beck depression inventory manual. Psychology Corporation, San AntonioGoogle Scholar
  29. 29.
    Provencher SW (2000) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679CrossRefGoogle Scholar
  30. 30.
    Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153PubMedCrossRefGoogle Scholar
  31. 31.
    Cavassila S, Deval S, Huegen C, Van Ormondt D, Graveron-Demilly D (2001) Cramer-Rao bounds: an evaluation tool for quantitation. NMR Biomed 14:278–283PubMedCrossRefGoogle Scholar
  32. 32.
    Subramony SH, Hernandez D, Adam A, Smith-Jefferson S, Hussey J, Guinm-Hardy K (2002) Ethnic differences in the expression of neurodegenerative disease: Machado–Joseph disease in Africans and Caucasians. Mov Disord 17:1068–1071PubMedCrossRefGoogle Scholar
  33. 33.
    Coutinho P (1994) História da doença de Machado-Joseph. Doença de Machado-Joseph: estudo clínico, patológico e epidemiológico de uma doença neurológica de origem portuguesa. Bial, Porto: BialGoogle Scholar
  34. 34.
    Sudarsky L, Coutinho P (1995) Machado–Joseph disease. Clin Neurosci 3:17–22PubMedGoogle Scholar
  35. 35.
    Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844PubMedCrossRefGoogle Scholar
  36. 36.
    Kravitz DJ, Saleem KS, Baker CI, Mishkin M (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12:217–230PubMedCrossRefGoogle Scholar
  37. 37.
    Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378PubMedCrossRefGoogle Scholar
  38. 38.
    Birn RM, Kenworthy L, Case L, Caravella R, Jones TB, Bandettini PA et al (2010) Neural systems supporting lexical search guided by letter and semantic category cues: a self-paced overt response fMRI study of verbal fluency. Neuroimage 49:1099–2107PubMedCrossRefGoogle Scholar
  39. 39.
    Taniwaki T, Sakai T, Kobayashi T, Kuwabara Y, Otsuka M, Ichiya Y et al (1997) Positron emission tomography (PET) in Machado–Joseph disease. J Neurol Sci 145:63–67PubMedCrossRefGoogle Scholar
  40. 40.
    Oz G, Hutter D, Tkac I, Clark HB, Gross MD, Jiang H et al (2010) Neurochemical alterations in spinocerebellar ataxia type 1 and their correlations with clinical status. Mov Disord 25:1253–1261PubMedCrossRefGoogle Scholar
  41. 41.
    Ernst T, Jiang CS, Nakama H, Buchthal S, Chang L (2010) Lower brain glutamate is associated with cognitive deficits in HIV patients: a new mechanism for HIV-associated neurocognitive disorder. J Magn Reson Imaging 32:1045–1053PubMedCrossRefGoogle Scholar
  42. 42.
    Kantarci K, Lowe V, Przybelski SA, Senjem ML, Weigand SD, Ivnik RJ et al (2011) Magnetic resonance spectroscopy, beta-amyloid load, and cognition in a population-based sample of cognitively normal older adults. Neurology 77:951–958PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tátila Martins Lopes
    • 1
  • Anelyssa D′Abreu
    • 1
  • Marcondes Cavalcante França Junior
    • 1
  • Clarissa Lin Yasuda
    • 1
  • Luiz Eduardo Betting
    • 1
  • Adriana Bastos Samara
    • 1
  • Gabriela Castellano
    • 3
  • Júlio César Somazz
    • 3
  • Marcio Luiz Figueredo Balthazar
    • 1
  • Iscia Lopes-Cendes
    • 2
  • Fernando Cendes
    • 1
    • 4
    Email author
  1. 1.Laboratory of Neuroimaging, Department of NeurologyUniversity of Campinas-UNICAMPCampinasBrazil
  2. 2.Neuro-genetic Laboratory, Department of Medical GeneticsUniversity of Campinas-UNICAMPCampinasBrazil
  3. 3.Department of Cosmic Rays and Chronology, Institute of Physics GlebWataghinUniversity of Campinas-UNICAMPCampinasBrazil
  4. 4.Department of NeurologyFCM-UNICAMP, Cidade UniversitáriaCampinasBrazil

Personalised recommendations