Journal of Neurology

, Volume 260, Issue 9, pp 2362–2369 | Cite as

Analysis of the visual system in Friedreich ataxia

  • Lauren A. Seyer
  • Kristin Galetta
  • James Wilson
  • Reiko Sakai
  • Susan Perlman
  • Katherine Mathews
  • George R. Wilmot
  • Christopher M. Gomez
  • Bernard Ravina
  • Theresa Zesiewicz
  • Khalaf O. Bushara
  • S. H. Subramony
  • Tetsuo Ashizawa
  • Martin B. Delatycki
  • Alicia Brocht
  • Laura J. Balcer
  • David R. Lynch
Original Communication

Abstract

To use optical coherence tomography (OCT) and contrast letter acuity to characterize vision loss in Friedreich ataxia (FRDA). High- and low-contrast letter acuity and neurological measures were assessed in 507 patients with FRDA. In addition, OCT was performed on 63 FRDA patients to evaluate retinal nerve fiber layer (RNFL) and macular thickness. Both OCT and acuity measures were analyzed in relation to genetic severity, neurologic function, and other disease features. High- and low-contrast letter acuity was significantly predicted by age and GAA repeat length, and highly correlated with neurological outcomes. When tested by OCT, 52.7 % of eyes (n = 110) had RNFL thickness values below the fifth percentile for age-matched controls. RNFL thickness was significantly lowest for those with worse scores on the Friedreich ataxia rating scale (FARS), worse performance measure composite Z2 scores, and lower scores for high- and low-contrast acuity. In linear regression analysis, GAA repeat length and age independently predicted RNFL thickness. In a subcohort of participants, 21 % of eyes from adult subjects (n = 29 eyes) had macular thickness values below the first percentile for age-matched controls, suggesting that macular abnormalities can also be present in FRDA. Low-contrast acuity and RNFL thickness capture visual and neurologic function in FRDA, and reflect genetic severity and disease progression independently. This suggests that such measures are useful markers of neurologic progression in FRDA.

Keywords

Friedreich ataxia Optical coherence tomography Neurology 

References

  1. 1.
    Lynch DR, Farmer JM, Balcer LJ, Wilson RB (2002) Friedreich ataxia: effects of genetic understanding on clinical evaluation and therapy. Arch Neurol 59:743–747PubMedCrossRefGoogle Scholar
  2. 2.
    Schulz JB, Denmer T, Schols L et al (2000) Oxidative stress in patients with Friedreich ataxia. Neurology 55:1719–1721PubMedCrossRefGoogle Scholar
  3. 3.
    Bidichandani SI, Ashizawa T, Patel PI (1997) Atypical Friedreich ataxia caused by compound heterozygosity for a novel missense mutation and the GAA triple-repeat expansion. Am J Hum Genet 60:1251–1256PubMedGoogle Scholar
  4. 4.
    Cossee M, Durr A, Schmitt M et al (1999) Friedreich’s ataxia: point mutations and clinical presentation of compound heterozygotes. Ann Neurol 45:200–206PubMedCrossRefGoogle Scholar
  5. 5.
    Monros E, Molto MD, Martinez F et al (1997) Phenotype correlation and intergenerational dynamics of the Friedreich ataxia GAA trinucleotide repeat. Am J Hum Genet 61:101–110PubMedCrossRefGoogle Scholar
  6. 6.
    Babady NE, Carelle N, Wells RD et al (2007) Advancements in the pathophysiology of Friedreich’s ataxia and new prospects for treatments. Molec Genet Metabolism 92:23–35CrossRefGoogle Scholar
  7. 7.
    Cooper JM, Schapira AH (2003) Friedreich’s ataxia: disease mechanisms, antioxidant and coenzyme Q10 therapy. BioFactors 18:163–171PubMedCrossRefGoogle Scholar
  8. 8.
    Harding AE (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104:589–620PubMedCrossRefGoogle Scholar
  9. 9.
    Pandolfo M (1999) Molecular pathogenesis of Friedreich ataxia. Arch Neurol 56:1201–1208PubMedCrossRefGoogle Scholar
  10. 10.
    Fahey MC, Cremer PD, Aw ST et al (2008) Vestibular, saccadic and fixation abnormalities in genetically confirmed Friedreich ataxia. Brain 131:1035–1045PubMedCrossRefGoogle Scholar
  11. 11.
    Fortuna F, Barboni P, Liguori R et al (2009) Visual system involvement in patients with Friedreich’s ataxia. Brain 132(part 1):116–123PubMedGoogle Scholar
  12. 12.
    Newman NJ, Biousse V (2004) Hereditary optic neuropathies. Eye 18:1144–1160PubMedCrossRefGoogle Scholar
  13. 13.
    Carelli V, Ross-Cisneros FN, Sadun AA (2002) Optic nerve degeneration and mitochondrial dysfunction: genetic and acquired optic neuropathies. Neurochem Int 40:573–584PubMedCrossRefGoogle Scholar
  14. 14.
    Teesalu P, Tuulonen A, Airaksinen PJ (2000) Optical coherence tomography and localized defects of the retinal nerve fiber layer. Acta Ophthalmol Scand 78:49–52PubMedCrossRefGoogle Scholar
  15. 15.
    Syc SB, Warner CV, Hiremath GS et al (2010) Reproducibility of high-resolution optical coherence tomography in multiple sclerosis. Mult Scler 0:1–11Google Scholar
  16. 16.
    Fisher JB, Jacobs DA, Markowitz CE et al (2006) Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 113(2):324–332PubMedCrossRefGoogle Scholar
  17. 17.
    Cettomai D, Pulicken M, Gordon-Lipkin E et al (2008) Reproducibility of optical coherence tomography in multiple sclerosis. Arch Neurol 65:1218–1222PubMedCrossRefGoogle Scholar
  18. 18.
    Kanamori A, Nakamura M, Escano MF et al (2003) Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol 135:513–520PubMedCrossRefGoogle Scholar
  19. 19.
    Talman LS, Bisker ER, Sackel DJ et al (2010) Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol. 67:749–760PubMedGoogle Scholar
  20. 20.
    Trip SA, Schlottmann PG, Jones SJ et al (2005) Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol 58(3):383–391PubMedCrossRefGoogle Scholar
  21. 21.
    Costello F, Coupland S, Hodge W et al (2006) Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 59(6):963–969PubMedCrossRefGoogle Scholar
  22. 22.
    Lynch DR, Farmer JM, Tsou AY et al (2006) Measuring Friedreich ataxia: complementary features of examination performance measures. Neurology 66:1711–1716PubMedCrossRefGoogle Scholar
  23. 23.
    Subramony SH, May W, Lynch D et al (2005) Cooperative ataxia group. measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology 64:1261–1262PubMedCrossRefGoogle Scholar
  24. 24.
    Friedman LS, Farmer JM, Perlman S et al (2010) Measuring the rate of progression in Friedreich ataxia: implications for clinical trial design. Mov Disord 25:426–432PubMedCrossRefGoogle Scholar
  25. 25.
    Deutsch EC, Santani AB, Perlman SL et al (2010) A rapid, non-invasive immunoassay for frataxin: utility in assessment of Friedreich ataxia. Mol. Gen. Metab. 101:238–245CrossRefGoogle Scholar
  26. 26.
    Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419PubMedCrossRefGoogle Scholar
  27. 27.
    Lynch DR, Farmer JM, Rochestie D, Balcer LJ (2002) Contrast letter acuity as a measure of visual dysfunction in patients with Friedreich ataxia. J Neuroophthalmol 22:270–274PubMedCrossRefGoogle Scholar
  28. 28.
    Ratchford JN, Quigg ME, Conger A et al (2009) Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology 73:302–308PubMedCrossRefGoogle Scholar
  29. 29.
    McCormack ML, Guttmann RP, Schumann M et al (2000) Frataxin point mutations in two patients with Friedreich’s ataxia and unusual clinical features. J Neurol Neurosurg Psychiatry 68:661–664PubMedCrossRefGoogle Scholar
  30. 30.
    Pinto F, Amantini A, deScisciolo G et al (1988) Visual involvement in Friedreich’s ataxia: pERG and VEP study. Eur Neurol 28(5):246–251PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lauren A. Seyer
    • 1
    • 2
    • 3
  • Kristin Galetta
    • 1
  • James Wilson
    • 1
  • Reiko Sakai
    • 1
  • Susan Perlman
    • 4
  • Katherine Mathews
    • 5
  • George R. Wilmot
    • 6
  • Christopher M. Gomez
    • 7
  • Bernard Ravina
    • 8
  • Theresa Zesiewicz
    • 9
  • Khalaf O. Bushara
    • 10
  • S. H. Subramony
    • 11
  • Tetsuo Ashizawa
    • 11
  • Martin B. Delatycki
    • 12
  • Alicia Brocht
    • 8
  • Laura J. Balcer
    • 1
  • David R. Lynch
    • 1
    • 2
    • 3
  1. 1.Departments of Neurology, Ophthalmology and EpidemiologyUniversity of Pennsylvania Medical SchoolPhiladelphiaUSA
  2. 2.Department of PediatricsUniversity of Pennsylvania Medical SchoolPhiladelphiaUSA
  3. 3.Divisions of Neurology and PediatricsChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  4. 4.Department of NeurologyUniversity of California Los AngelesLos AngelesUSA
  5. 5.Department of NeurologyUniversity of IowaIowaUSA
  6. 6.Department of NeurologyEmory UniversityAtlantaUSA
  7. 7.Department of NeurologyUniversity of ChicagoChicagoUSA
  8. 8.Department of NeurologyUniversity of RochesterRochesterUSA
  9. 9.Department of NeurologyUniversity of South FloridaTampaUSA
  10. 10.Department of NeurologyUniversity of MinnesotaMinneapolisUSA
  11. 11.Department of NeurologyUniversity of FloridaGainesvilleUSA
  12. 12.Department of NeurologyMurdoch Children’s Research InstituteMelbourneAustralia

Personalised recommendations