Journal of Neurology

, Volume 260, Issue 4, pp 1087–1098 | Cite as

Clinical and imaging correlates of EEG patterns in hospitalized patients with encephalopathy

  • Raoul Sutter
  • Robert D. Stevens
  • Peter W. Kaplan
Original Communication


To identify the relationship between pathologic electroencephalographic (EEG) patterns, clinical and neuroradiological abnormalities, and outcome in hospitalized patients with acute encephalopathy. This 5-year cohort study was performed at an academic tertiary care center. EEGs in 154 patients with altered mental status were classified according to five predefined patterns: Isolated continuous slowing of background activity (theta, theta/delta, and delta activity) and patterns with slowing background activity with episodic transients [i.e., triphasic waves (TWs) or frontal intermittent delta activity (FIRDA)]. Clinical characteristics, blood tests and neuroimaging were compared among groups. Associations between EEG patterns and structural and non-structural abnormalities were calculated. Glasgow Outcome Score >3 at discharge was defined as favorable and 1–3 as unfavorable outcome. In multivariable analyses, theta was associated with brain atrophy (OR 2.6, p = 0.020), theta/delta with intracerebral hemorrhages (OR 6.8, p = 0.005), FIRDA with past cerebrovascular accidents (OR 2.7, p = 0.004), TWs with liver or multi-organ failure (OR 6, p = 0.004; OR 4, p = 0.039), and delta activity with alcohol/drug abuse with or without intoxication, and HIV infection (OR 3.8, p = 0.003; OR 9, p = 0.004). TWs were associated with death (OR 4.5, p = 0.005); theta/delta with unfavorable outcomes (OR 2.5, p = 0.033), while patients with FIRDA had favorable outcomes (OR 4.8, p = 0.004). In encephalopathic patients, well-defined EEG patterns are associated with specific pathological conditions and outcomes, suggesting that mechanistic hypotheses underlie these abnormal EEG patterns. To clarify the respective contributions of non-structural and structural abnormalities to encephalopathy reflected in specific EEG patterns, prospective studies using continuous EEG monitoring during the acute onset of encephalopathy are needed.


Encephalopathy EEG patterns Triphasic waves FIRDA Theta activity Theta/delta activity Delta activity 


  1. 1.
    Accolla EA, Kaplan PW, Maeder-Ingvar M, Jukopila S, Rossetti AO (2011) Clinical correlates of frontal intermittent rhythmic delta activity (FIRDA). Clin Neurophysiol 122:27–31PubMedCrossRefGoogle Scholar
  2. 2.
    American Psychiatric Association (2000) Dsm-Iv American Psychiatric Association. Task Force. Diagnostic and statistical manual of mental disorders: DSM-IV-TR. American Psychiatric PubGoogle Scholar
  3. 3.
    ASDA (1992) EEG arousals: scoring rules and examples: a preliminary report from the Sleep Disorders Atlas Task Force of the American Sleep Disorders Association. Sleep 15:173–184Google Scholar
  4. 4.
    Bahamon-Dussan JE, Celesia GG, Grigg-Damberger MM (1989) Prognostic significance of EEG triphasic waves in patients with altered state of consciousness. J Clin Neurophysiol 6:313–319PubMedCrossRefGoogle Scholar
  5. 5.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, LeGall JR, Morris A, Spragg R (1994) Report of the American-European consensus conference on ARDS: definitions, mechanisms, relevant outcomes and clinical trial coordination. The Consensus Committee. Intensive Care Med 20:225–232PubMedCrossRefGoogle Scholar
  6. 6.
    Chen W, Song X, Zhang Y, Darvesh S, Zhang N, D’Arcy RC, Black S, Rockwood K (2010) An MRI-based semiquantitative index for the evaluation of brain atrophy and lesions in Alzheimer’s disease, mild cognitive impairment and normal aging. Dement Geriatr Cogn Disord 30:121–130PubMedCrossRefGoogle Scholar
  7. 7.
    Cisse Y, Wang S, Inoue I, Kido H (2010) Rat model of influenza-associated encephalopathy (IAE): studies of electroencephalogram (EEG) in vivo. Neuroscience 165:1127–1137PubMedCrossRefGoogle Scholar
  8. 8.
    Cobb WA (1945) Rhythmic slow discharges in the electroencephalogram. J Neurol Neurosurg Psychiatry 8:65–78PubMedCrossRefGoogle Scholar
  9. 9.
    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41PubMedCrossRefGoogle Scholar
  10. 10.
    Cordeau JP (1959) Monorhythmic frontal delta activity in the human electroencephalogram: a study of 100 cases. Electroencephalogr Clin Neurophysiol 11:733–746PubMedCrossRefGoogle Scholar
  11. 11.
    Daly D, Whelan JL, Bickford RG, Maccarty CS (1953) The electroencephalogram in cases of tumors of the posterior fossa and third ventricle. Electroencephalogr Clin Neurophysiol 5:203–216PubMedCrossRefGoogle Scholar
  12. 12.
    Demedts M, Pillen E, De Groote J, Van de Woestijne KP (1973) Hepatic encephalopathy: comparative study of EEG abnormalities, neuropsychic disturbances and blood ammonia. Acta Neurol Belg 73:281–288PubMedGoogle Scholar
  13. 13.
    Eidelman LA, Putterman D, Putterman C, Sprung CL (1996) The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA 275:470–473PubMedCrossRefGoogle Scholar
  14. 14.
    Ely EW, Shintani A, Truman B, Speroff T, Gordon SM, Harrell FE Jr, Inouye SK, Bernard GR, Dittus RS (2004) Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 291:1753–1762PubMedCrossRefGoogle Scholar
  15. 15.
    Fariello RG, Orrison W, Blanco G, Reyes PF (1982) Neuroradiological correlates of frontally predominant intermittent rhythmic delta activity (FIRDA). Electroencephalogr Clin Neurophysiol 54:194–202PubMedCrossRefGoogle Scholar
  16. 16.
    Faure J, Droogleever-Fortuyn J, Gastaut H, Larramendi L, Martin P, Passouant P, Remond A, Titeca J, Walter WG (1951) Genesis and significance of rhythms recorded at a distance in cases of cerebral tumors. Electroencephalogr Clin Neurophysiol 3:429–434PubMedCrossRefGoogle Scholar
  17. 17.
    Fisch BJ (1999) Electrographic seizure patterns, pseudoperiodic patterns, and pseudoepileptiform patterns. In: Fisch BJ (ed) Fisch and Spehlmann’s EEG Primer: basic principles of digital and analog EEG. Elsevier, Amsterdam, pp 328–331Google Scholar
  18. 18.
    Foley JM, Watson CW, Adams RD (1950) Significance of the electroencephalographic changes in hepatic coma. Trans Am Neurol Assoc 51:161–165PubMedGoogle Scholar
  19. 19.
    Gastaut JL, Michel B, Hassan SS, Cerda M, Bianchi L, Gastaut H (1979) Electroencephalography in brain edema (127 cases of brain tumor investigated by cranial computerized tomography). Electroencephalogr Clin Neurophysiol 46:239–255PubMedCrossRefGoogle Scholar
  20. 20.
    Gloor P, Ball G, Schaul N (1977) Brain lesions that produce delta waves in the EEG. Neurology 27:326–333PubMedCrossRefGoogle Scholar
  21. 21.
    Gongvatana A, Cohen RA, Correia S, Devlin KN, Miles J, Kang H, Ombao H, Navia B, Laidlaw DH, Tashima KT (2011) Clinical contributors to cerebral white matter integrity in HIV-infected individuals. J Neurovirol 17:477–486PubMedCrossRefGoogle Scholar
  22. 22.
    Hooshmand H (1983) The clinical significance of frontal intermittent rhythmic delta activity (FIRDA). Clin Electroencephalogr 14:135–137PubMedGoogle Scholar
  23. 23.
    Hughes JR (1980) Correlations between EEG and chemical changes in uremia. Electroencephalogr Clin Neurophysiol 48:583–594PubMedCrossRefGoogle Scholar
  24. 24.
    Jasper H, Van Buren J (1955) Interrelationship between cortex and subcortical structures: clinical electroencephalographic studies. Electroencephalogr Clin Neurophysiol Suppl 4:168–188PubMedGoogle Scholar
  25. 25.
    Kaplan PW, Rossetti AO (2011) EEG patterns and imaging correlations in encephalopathy: encephalopathy part II. J Clin Neurophysiol 28:233–251PubMedCrossRefGoogle Scholar
  26. 26.
    Karnaze DS, Bickford RG (1984) Triphasic waves: a reassessment of their significance. Electroencephalogr Clin Neurophysiol 57:193–198PubMedCrossRefGoogle Scholar
  27. 27.
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31:1250–1256PubMedCrossRefGoogle Scholar
  28. 28.
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 29:530–538PubMedGoogle Scholar
  29. 29.
    Marchetti P, D’Avanzo C, Orsato R, Montagnese S, Schiff S, Kaplan PW, Piccione F, Merkel C, Gatta A, Sparacino G, Toffolo GM, Amodio P (2011) Electroencephalography in patients with cirrhosis. Gastroenterology 141(5):1680-9.e1–1680-9.e2CrossRefGoogle Scholar
  30. 30.
    Ogunyemi A (1996) Triphasic waves during post-ictal stupor. Can J Neurol Sci 23:208–212PubMedGoogle Scholar
  31. 31.
    Polson J, Lee WM (2005) AASLD position paper: the management of acute liver failure. Hepatology 41:1179–1197PubMedCrossRefGoogle Scholar
  32. 32.
    Schmidt R, Fazekas F, Kleinert G, Offenbacher H, Gindl K, Payer F, Freidl W, Niederkorn K, Lechner H (1992) Magnetic resonance imaging signal hyperintensities in the deep and subcortical white matter: a comparative study between stroke patients and normal volunteers. Arch Neurol 49:825–827PubMedCrossRefGoogle Scholar
  33. 33.
    Stockard JJ, Bickford RG (1975) The neurophysiology of anesthesia. In: Gordon E (ed) A basis and practice of neuroanesthesia. Excerpta Medica, Amsterdam, pp 3–46Google Scholar
  34. 34.
    Sundaram MB, Blume WT (1987) Triphasic waves: clinical correlates and morphology. Can J Neurol Sci 14:136–140PubMedGoogle Scholar
  35. 35.
    Tashiro K, Ogata K, Goto Y, Taniwaki T, Okayama A, Kira J, Tobimatsu S (2006) EEG findings in early-stage corticobasal degeneration and progressive supranuclear palsy: a retrospective study and literature review. Clin Neurophysiol 117:2236–2242PubMedCrossRefGoogle Scholar
  36. 36.
    The Acute Respiratory Distress Syndrome Network (2000) The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRefGoogle Scholar
  37. 37.
    Watemberg N, Alehan F, Dabby R, Lerman-Sagie T, Pavot P, Towne A (2002) Clinical and radiologic correlates of frontal intermittent rhythmic delta activity. J Clin Neurophysiol 19:535–539PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Raoul Sutter
    • 1
    • 2
    • 3
    • 5
  • Robert D. Stevens
    • 1
    • 2
    • 3
    • 4
    • 5
  • Peter W. Kaplan
    • 2
    • 5
  1. 1.Division of Neurosciences Critical Care, Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of Medicine and Bayview Medical CenterBaltimoreUSA
  2. 2.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of NeurosurgeryJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Department of RadiologyJohns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Department of NeurologyJohns Hopkins Bayview Medical CenterBaltimoreUSA

Personalised recommendations