Journal of Neurology

, Volume 260, Issue 3, pp 839–846 | Cite as

Decision making in juvenile myoclonic epilepsy

  • Laura Zamarian
  • Julia Höfler
  • Giorgi Kuchukhidze
  • Margarete Delazer
  • Elisabeth Bonatti
  • Georg Kemmler
  • Eugen Trinka
Original Communication

Abstract

Recent neuroimaging studies have reported structural and functional brain abnormalities in patients with juvenile myoclonic epilepsy (JME), which may also involve cortical and subcortical networks that are important for decision making. This study is the first attempt to examine decision making in JME. Twenty-two patients with JME (median age 26.00, range 18–50) and 33 healthy controls (median age 26.00, range 18–57) participated in the study. For the JME group, the median age at seizure onset was 14.00 years (range 1–20); the median epilepsy duration was 11.50 years (range 3–45). Eleven patients (50 %) had pharmacoresistant seizures. All participants completed the Iowa Gambling Task (IGT), a widely used standard task of decision making. In this task, contingencies are not explained and feedback on previous decisions has to be used in order to learn to choose the advantageous alternatives. In the IGT, patients with JME showed difficulty in learning to choose advantageously compared to healthy controls. Difficulty was enhanced for the patients with pharmacoresistant seizures. A correlation analysis revealed an association between decision-making performance of patients with JME and executive functions. Results indicate that patients with JME have difficulty in making advantageous decisions and that persistence of seizures might be a critical factor for cognitive functioning. Findings of this study add a new aspect to the neuropsychological profile of JME. Difficulty in decision making may impair functioning of patients with JME in everyday life and affect their adherence to treatment plans.

Keywords

Idiopathic generalized epilepsy Juvenile myoclonic epilepsy Decision making Executive functions Neuropsychology 

Supplementary material

415_2012_6715_MOESM1_ESM.docx (32 kb)
Supplementary material 1 (DOCX 32 kb)

References

  1. 1.
    Commission on Classification and Terminology of the International League against Epilepsy (1989) Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 30:389–399CrossRefGoogle Scholar
  2. 2.
    Janz D, Christian W (1957) Impulsiv-petit mal. Deutsche Zeitschrift für. Nervenheilkunde 176:346–386Google Scholar
  3. 3.
    Trinka E, Kienpointner G, Unterberger I, Luef G, Bauer G, Doering LB, Doering S (2006) Psychiatric comorbidity in juvenile myoclonic epilepsy. Epilepsia 47:2086–2091PubMedCrossRefGoogle Scholar
  4. 4.
    Gelisse P, Genton P, Thomas P, Rey M, Samuelian JC, Dravet C (2001) Clinical factors of drug resistance in juvenile myoclonic epilepsy. J Neurol Neurosurg Psychiatry 70:240–243PubMedCrossRefGoogle Scholar
  5. 5.
    Devinsky O, Gershengorn J, Brown E, Perrine K, Vazquez B, Luciano D (1997) Frontal functions in juvenile myoclonic epilepsy. Neuropsychiatry Neuropsychol Behav Neurol 10:243–246PubMedGoogle Scholar
  6. 6.
    Kim SY, Hwang YH, Lee HW, Suh CK, Kwon SH, Park SP (2007) Cognitive impairment in juvenile myoclonic epilepsy. J Clin Neurol 3:86–92PubMedCrossRefGoogle Scholar
  7. 7.
    Piazzini A, Turner K, Vignoli A, Canger R, Canevini MP (2008) Frontal cognitive dysfunction in juvenile myoclonic epilepsy. Epilepsia 49:657–662PubMedCrossRefGoogle Scholar
  8. 8.
    Schwartz BE, Halgren E, Simpkins F, Syndulko K (1994) Memory in patients with frontal and primary generalized epilepsy. J Epilepsy 7:232–241CrossRefGoogle Scholar
  9. 9.
    de Araujo Filho GM, Jackowski AP, Lin K, Peruchi MM, Cabocio LO, Guaranha MS, Guilhoto LM, Carrete H Jr, Yacubian EM (2009) Personality traits related to juvenile myoclonic epilepsy: MRI reveals prefrontal abnormalities through a voxel-based morphometry study. Epilepsy Behav 15:202–207PubMedCrossRefGoogle Scholar
  10. 10.
    Savic I, Lekvall A, Greitz D, Helms G (2000) MR spectroscopy shows reduced frontal lobe concentrations of N-acetyl aspartate in patients with juvenile myoclonic epilepsy. Epilepsia 41:290–296PubMedCrossRefGoogle Scholar
  11. 11.
    Holmes MD, Quiring J, Tucker DM (2010) Evidence that juvenile myoclonic epilepsy is a disorder of frontotemporal corticothalamic networks. Neuroimage 49:80–93PubMedCrossRefGoogle Scholar
  12. 12.
    Ciumas C, Wahlin TB, Jucaite A, Lindstrom P, Halldin C, Savic I (2008) Reduced dopamine transporter binding in patients with juvenile myoclonic epilepsy. Neurology 71:788–794PubMedCrossRefGoogle Scholar
  13. 13.
    Vollmar C, O’Muircheartaigh J, Barker GJ, Symms MR, Thompson P, Kumari V, Duncan JS, Janz D, Richardson MP, Kopp MJ (2011) Motor system hyperconnectivity in juvenile myoclonic epilepsy: a cognitive functional magnetic resonance imaging study. Brain 134:1710–1719PubMedCrossRefGoogle Scholar
  14. 14.
    Vollmar C, O’Muircheartaigh J, Symms MR, Barker GJ, Thompson P, Kumari V, Stretton J, Duncan JS, Richardson MP, Koepp MJ (2012) Altered microstructural connectivity in juvenile myoclonic epilepsy: the missing link. Neurology 78:1555–1559PubMedCrossRefGoogle Scholar
  15. 15.
    Ronan L, Alhusaini S, Scanlon C, Doherty CP, Delanty N, Fitzsimons M (2012) Widespread cortical morphologic changes in juvenile myoclonic epilepsy: evidence from structural MRI. Epilepsia 53:651–658PubMedCrossRefGoogle Scholar
  16. 16.
    Trepel C, Fox CR, Poldrack RA (2005) Prospect theory on the brain? Toward a cognitive neuroscience of decision under risk. Brain Res Cogn Brain Res 23:34–50PubMedCrossRefGoogle Scholar
  17. 17.
    Gleichgerrcht E, Ibanez A, Roca M, Torralva T, Manes F (2010) Decision-making cognition in neurodegenerative diseases. Nat Rev Neurol 6:611–623PubMedCrossRefGoogle Scholar
  18. 18.
    Schultz W, Preuschoff K, Camerer C, Hsu M, Fiorillo CD, Tobler PN, Bossaerts P (2008) Explicit neural signals reflecting reward uncertainty. Philos Trans R Soc Lond B Biol Sci 363:3801–3811PubMedCrossRefGoogle Scholar
  19. 19.
    Bechara A, Damasio H, Damasio AR (2000) Emotion, decision making and the orbitofrontal cortex. Cereb Cortex 10:295–307PubMedCrossRefGoogle Scholar
  20. 20.
    Dunn BD, Dalgleish T, Lawrence AD (2006) The somatic marker hypothesis: a critical evaluation. Neurosci Biobehav Rev 30:239–271PubMedCrossRefGoogle Scholar
  21. 21.
    Härting C, Markowitsch HJ, Neufeld H, Calabrese P, Deisinger K, Kessler J (2000) WMS-R Wechsler Gedächtnistest-Revidierte Fassung. Hans Huber, BernGoogle Scholar
  22. 22.
    Lezak MD (1998) Neuropsychological assessment. Oxford University Press, New YorkGoogle Scholar
  23. 23.
    Aschenbrenner S, Tucha O, Lange KW (2000) Regensburger Wortflüssigkeits-Test (RWT). Hogrefe, GöttingenGoogle Scholar
  24. 24.
    Kohler J, Beck U (2000) Planungstest. Beck and Kohler GbR, KostanzGoogle Scholar
  25. 25.
    Kongs SK, Thompson LL, Iverson GL, Heaton RK (2000) The Wisconsin card sorting test (WCST-64). Hogrefe Testzentrale, GöttingenGoogle Scholar
  26. 26.
    Lehrl S (1991) Manual zum MWT-B. Spitta, BalingenGoogle Scholar
  27. 27.
    Brand M, Labudda K, Markowitsch HJ (2006) Neuropsychological correlates of decision-making in ambiguous and risky situations. Neural Netw 19:1266–1276PubMedCrossRefGoogle Scholar
  28. 28.
    Zamarian L, Sinz H, Bonatti E, Gamboz N, Delazer M (2008) Normal aging affects decisions under ambiguity, but not decisions under risk. Neuropsychology 22:645–657PubMedCrossRefGoogle Scholar
  29. 29.
    Brand M, Markowitsch HJ (2010) Aging and decision-making: a neurocognitive perspective. Gerontology 56:319–324PubMedCrossRefGoogle Scholar
  30. 30.
    Delazer M, Zamarian L, Bonatti E, Kuchukhidze G, Koppelstätter F, Bodner T, Benke T, Trinka E (2010) Decision making under ambiguity and under risk in mesial temporal lobe epilepsy. Neuropsychologia 48:194–200PubMedCrossRefGoogle Scholar
  31. 31.
    Zamarian L, Trinka E, Bonatti E, Kuchukhidze G, Bodner T, Benke T, Koppelstaetter F, Delazer M (2011) Executive functions in chronic mesial temporal lobe epilepsy. Epilepsy Res Treat. doi:10.1155/2011/596174 PubMedGoogle Scholar
  32. 32.
    Brand M, Recknor EC, Grabenhorst F, Bechara A (2007) Decisions under ambiguity and decisions under risk: correlations with executive functions and comparisons of two different gambling tasks with implicit and explicit rules. J Clin Exp Neuropsychol 29:86–99PubMedCrossRefGoogle Scholar
  33. 33.
    Bar-On R, Tranel D, Denburg NL, Bechara A (2003) Exploring the neurological substrate of emotional and social intelligence. Brain 126:1790–1800PubMedCrossRefGoogle Scholar
  34. 34.
    Brand M, Grabenhorst F, Starcke K, Vandekerckehove MM, Markowitsch HJ (2007) Role of the amygdala in decisions under ambiguity and decisions under risk: evidence from patients with Urbach-Wiethe disease. Neuropsychologia 45:1305–1317PubMedCrossRefGoogle Scholar
  35. 35.
    Cools R, Barker RA, Sahakian BJ, Robbins TW (2003) l-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychologia 41:1431–1441PubMedCrossRefGoogle Scholar
  36. 36.
    Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedCrossRefGoogle Scholar
  37. 37.
    Mega MS, Cummings JL (1994) Frontal-subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci 6:358–370PubMedGoogle Scholar
  38. 38.
    Bouilleret V, Semah F, Biraben A, Taussig D, Chassoux F, Syrota A, Ribeiro MJ (2005) Involvement of the basal ganglia in refractory epilepsy: an 18F-fluoro-l-DOPA PET study using 2 methods of analysis. J Nucl Med 46:540–547PubMedGoogle Scholar
  39. 39.
    Owen AM (2004) Cognitive dysfunction in Parkinson’s disease: the role of frontostriatal circuitry. Neuroscientist 10:525–537PubMedCrossRefGoogle Scholar
  40. 40.
    Meador KJ (2006) Cognitive and memory effects of the new antiepileptic drugs. Epilepsy Res 68:63–67PubMedCrossRefGoogle Scholar
  41. 41.
    Cavanna AE, Ali F, Rickards HE, McCorry D (2010) Behavioral and cognitive effects of anti-epileptic drugs. Discov Med 9:138–144PubMedGoogle Scholar
  42. 42.
    Aldenkamp AP, DeKrom M, Reijs R (2003) Newer antiepileptic drugs and cognitive issues. Epilepsia 44(Suppl 4):21–29PubMedCrossRefGoogle Scholar
  43. 43.
    Loring DW, Marino S, Meador KJ (2007) Neuropsychological and behavioral effects of antiepilepsy drugs. Neuropsychol Rev 17:413–425PubMedCrossRefGoogle Scholar
  44. 44.
    Mantoan L, Walker M (2011) Treatment options in juvenile myoclonic epilepsy. Curr Treat Options Neurol 13:355–370PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Laura Zamarian
    • 1
  • Julia Höfler
    • 1
    • 2
  • Giorgi Kuchukhidze
    • 1
  • Margarete Delazer
    • 1
  • Elisabeth Bonatti
    • 3
  • Georg Kemmler
    • 4
  • Eugen Trinka
    • 1
    • 2
  1. 1.Department of NeurologyMedical University of InnsbruckInnsbruckAustria
  2. 2.Department of Neurology, Christian Doppler KlinikParacelsus Medical University of SalzburgSalzburgAustria
  3. 3.Department of PediatricsMedical University of InnsbruckInnsbruckAustria
  4. 4.Department of PsychiatryMedical University of InnsbruckInnsbruckAustria

Personalised recommendations