Journal of Neurology

, Volume 260, Issue 6, pp 1452–1468 | Cite as

Treatment of cognitive impairment in multiple sclerosis: position paper

  • Maria Pia AmatoEmail author
  • Dawn Langdon
  • Xavier Montalban
  • Ralph H. B. Benedict
  • John DeLuca
  • Lauren B. Krupp
  • Alan J. Thompson
  • Giancarlo Comi


Cognitive impairment in multiple sclerosis (MS) is common, debilitating and burdensome. Key evidence from trials was reviewed to enable recommendations to be made to guide clinical practice and research. Behavioural and pharmacological interventions on cognition reported in published studies were reviewed. Most studies evaluating behavioural treatment for impairment in learning and memory, deficits of attention and executive function have demonstrated some improvement. Controlled studies in relapsing remitting MS indicate interferon (IFN) β-1b and IFN β-1a were associated with modest cognitive improvement. The effects of symptomatic therapies such as modafinil and donepezil are inconsistent. Most studies yielding positive findings have significant methodological difficulties limiting the confidence in making any broad treatment recommendations. There are no published reports of glatiramer acetate, natalizumab and fingolimod being effective in improving cognition in controlled trials. The effects of disease modifying therapies in other forms of MS and clinically isolated syndrome have not yielded positive results. Data linking behavioural therapy, symptomatic treatment or disease modifying treatment, to either reducing cognitive decline or improving impaired cognition are limited and inconsistent. The treatment and prevention of cognitive impairment needs to remain a key research focus, identifying new interventions and improving clinical trial methodology.


Multiple sclerosis Cognition Treatment Cognitive rehabilitation Disease modifying drugs Symptomatic treatment 



The medical writer, who supported the development of this manuscript (Janet Bray PharmD), undertook initial literature research, development of summary tables, editing the text provided by the authors, and verification of references and other editorial aspects. This work was supported by the Serono Symposia International Foundation (SSIF), an independent, non-profit organization dedicated to the Continuing Medical Education.

Conflicts of interest

All authors were compensated by Serono Symposia International Foundation (SSIF) for their contribution as faculty and speakers for the conference on “Cognition Disorders in MS” held in Florence on 30 September and 1 October 2011, which included contributions to this position paper.


  1. 1.
    Peyser JM, Rao SM, LaRocca NG, Kaplan E (1990) Guidelines for neuropsychological research in multiple sclerosis. Arch Neurol 47:94–97PubMedCrossRefGoogle Scholar
  2. 2.
    Rao S, Leo G, Bernardin L, Unverzagt F (1991) Cognitive dysfunction in multiple sclerosis: frequency, patterns, and predictions. Neurology 41:685–691PubMedCrossRefGoogle Scholar
  3. 3.
    Rao SM (1997) Neuropsychological aspects of multiple sclerosis. In: Raine CS, McFarland HF, Tourtellotte WW (eds) Multiple sclerosis: clinical and pathogenetic basis. Chapman & Hall, London, pp 357–362Google Scholar
  4. 4.
    Benedict RH, Cookfair D, Gavett R et al (2006) Validity of the minimal assessment of cognitive function in multiple sclerosis. J Int Neuropsychol Soc 12:549–558PubMedCrossRefGoogle Scholar
  5. 5.
    Benedict R, Bobholz J (2007) Multiple sclerosis. Semin Neurol 27(1):78–85PubMedCrossRefGoogle Scholar
  6. 6.
    Amato MP, Portaccio E, Goretti B et al (2010) Cognitive impairment in early stages of multiple sclerosis. Neurol Sci 31(Suppl 2):S211–S214PubMedCrossRefGoogle Scholar
  7. 7.
    Amato MP, Zipoli V, Portaccio E (2008) Cognitive changes in multiple sclerosis. Expert Rev Neurother 8:1585–1596PubMedCrossRefGoogle Scholar
  8. 8.
    Benedict RH, Bruce JM, Dwyer MG, Abdelrahman N, Hussein S, Weinstock-Guttman B, Garg N, Munschauer F, Zivadinov R (2006) Neocortical atrophy, third ventricular width, and cognitive dysfunction in multiple sclerosis. Arch Neurol 63(9):1301–1306PubMedCrossRefGoogle Scholar
  9. 9.
    Amato MP, Portaccio E, Goretti B et al (2010) Relevance of cognitive deterioration in early relapsing-remitting MS: a 3-year follow-up study. Mult Scler 16:1474–1482PubMedCrossRefGoogle Scholar
  10. 10.
    Zipoli V, Goretti B, Hakiki B et al (2010) Cognitive impairment predicts conversion to multiple sclerosis in clinically isolated syndromes. Mult Scler 16:62–67PubMedCrossRefGoogle Scholar
  11. 11.
    Reuter F, Zaaraoui W, Crespy L, Faivre A, Rico A, Malikova I et al (2011) Frequency of cognitive impairment dramatically increases during the first 5 years of multiple sclerosis. J Neurol Neurosurg Psychiatry 82(10):1157–1159PubMedCrossRefGoogle Scholar
  12. 12.
    Lebrun C, Blanc F, Brassat D, Zephir H, de Seze J, CFSEP (2010) Cognitive function in radiologically isolated syndrome. Mult Scler 16(8):919–925PubMedCrossRefGoogle Scholar
  13. 13.
    Amato MP, Hakiki B, Goretti B, et al (2012) Association of T1 lesion volume and neocortical atrophy with cognitive impairment in radiologically isolated syndromes. Neurology (in press)Google Scholar
  14. 14.
    Amato MP, Zipoli V, Goretti B et al (2006) Benign multiple sclerosis: cognitive, psychological and social aspects in a clinical cohort. J Neurol 253:1054–1059PubMedCrossRefGoogle Scholar
  15. 15.
    Benedict RH, Zivadinov R (2011) Risk factors for and management of cognitive dysfunction in multiple sclerosis. Nat Rev Neurol 7(6):332–342PubMedCrossRefGoogle Scholar
  16. 16.
    Chiaravalloti ND, DeLuca J (2008) Cognitive impairment in multiple sclerosis. Lancet Neurol 7:1139–1151PubMedCrossRefGoogle Scholar
  17. 17.
    Comi G (2010) Effects of disease modifying treatments on cognitive dysfunction in multiple sclerosis. Neurol Sci 31(Suppl 2):S261–S264PubMedCrossRefGoogle Scholar
  18. 18.
    Sumowski JF, Wylie GR, Chiaravalloti ND, DeLuca J (2010) Intellectual enrichment lessens the effect of brain atrophy on learning and memory in MS. Neurology 74:1942–1945PubMedCrossRefGoogle Scholar
  19. 19.
    Benedict RH, Cox D, Thompson LL, Foley F, Weinstock-Guttman B, Munschauer F (2004) Reliable screening for neuropsychological impairment in multiple sclerosis. Mult Scler 10(6):675–678PubMedCrossRefGoogle Scholar
  20. 20.
    Sonder J, Bosma L, van der Linden F, Knol D, Polman C, Uitdehaag B (2012) Proxy measurements in multiple sclerosis: agreement on different patient-reported outcome scales. Mult Scler 18(2):196–201PubMedCrossRefGoogle Scholar
  21. 21.
    Rudick R, Antel J, Confavreux C et al (1997) Recommendations from the National Multiple Sclerosis Society Clinical Outcomes Assessment Task Force. Ann Neurol 42:379–382PubMedCrossRefGoogle Scholar
  22. 22.
    Rao SM (1990) A manual for the brief, repeatable battery of neuropsychological tests in multiple sclerosis. Milwaukee, WisconsinGoogle Scholar
  23. 23.
    Benedict RH, Fischer JS, Archibald CJ et al (2002) Minimal neuropsychological assessment of MS patients: a consensus approach. Clin Neuropsychol 16:381–397PubMedCrossRefGoogle Scholar
  24. 24.
    Strober L, Englert J, Munschauer F, Weinstock-Guttman B, Rao S, Benedict RH (2009) Sensitivity of conventional memory tests in multiple sclerosis: comparing the Rao Brief Repeatable Neuropsychological Battery and the Minimal Assessment of Cognitive Function in MS. Mult Scler 15:1077–1084PubMedCrossRefGoogle Scholar
  25. 25.
    Jønsson A, Korfitzen EM, Heltberg A, Ravnborg MH, Byskov-Ottosen E (1993) Effects of neuropsychological treatment in patients with multiple sclerosis. Acta Neurol Scand 88:394–400PubMedCrossRefGoogle Scholar
  26. 26.
    Solari A (2010) Methodological aspects of randomized controlled trials on cognitive interventions. Neurol Sci 31(2):279–282CrossRefGoogle Scholar
  27. 27.
    O’Brien AR, Chiaravalloti N, Goverover Y, Deluca J (2008) Evidenced-based cognitive rehabilitation for persons with multiple sclerosis: a review of the literature. Arch Phys Med Rehabil 89:761–769PubMedCrossRefGoogle Scholar
  28. 28.
    das Nair R, Ferguson H, Stark DL, Lincoln NB (2012) Memory Rehabilitation for people with multiple sclerosis. Cochrane Database Syst Rev 14(3):CD008754Google Scholar
  29. 29.
    DeLuca J, Barbieri-Berger S, Johnson SK (1994) The nature of memory impairments in multiple sclerosis: acquisition versus retrieval. J Clin Exp Neuropsychol 16(2):183–189PubMedCrossRefGoogle Scholar
  30. 30.
    DeLuca J, Gaudino EA, Diamond BJ, Christodoulou C, Engel RA (1998) Acquisition and storage deficits in multiple sclerosis. J Clin Exp Neuropsychol 20:376–390PubMedCrossRefGoogle Scholar
  31. 31.
    Gaudino EA, Chiaravalloti ND, DeLuca J, Diamond BJ (2001) A comparison of memory performance in relapsing-remitting, primary progressive and secondary progressive, multiple sclerosis. Neuropsychiatry Neuropsychol Behav Neurol 14(1):32–44PubMedGoogle Scholar
  32. 32.
    Goverover Y, Chiaravalloti N, DeLuca J (2008) Self-generation to improve learning and memory of functional activities in persons with multiple sclerosis: meal preparation and managing finances. Arch Phys Med Rehabil 89:1514–1521PubMedCrossRefGoogle Scholar
  33. 33.
    Basso MR, Lowery N, Ghormley C, Combs D, Johnson J (2006) Self-generated learning in people with multiple sclerosis. J Int Neuropsychol Soc 12:640–648PubMedCrossRefGoogle Scholar
  34. 34.
    Basso MR, Ghormley C, Lowery N, Combs D, Bornstein RA (2002) Self-generated learning in people with multiple sclerosis: an extension of Chiaravalloti and DeLuca (2002). J Clin Exp Neuropsychol 30:63–69CrossRefGoogle Scholar
  35. 35.
    Goverover Y, Hillary FG, Chiaravalloti N, Arango-Lasprilla JC, DeLuca J (2009) A functional application of the spacing effect to improve learning and memory in persons with multiple sclerosis. J Clin Exp Neuropsychol 31:513–522PubMedCrossRefGoogle Scholar
  36. 36.
    Goverover Y, Basso MR, Wood H, Chiaravalloti N, DeLuca J (2011) Examining the benefits of combining two learning strategies on recall of functional information in persons with multiple sclerosis. Mult Scler 17(12):1488–1497PubMedCrossRefGoogle Scholar
  37. 37.
    Chiaravalloti ND, DeLuca J, Moore NB, Ricker JH (2005) Treating learning impairments improves memory performance in multiple sclerosis: a randomized clinical trial. Mult Scler 11:58–68PubMedCrossRefGoogle Scholar
  38. 38.
    Chiaravalloti ND, Wylie G, Leavitt V, DeLuca J (2012) Increased cerebral activation after behavioral treatment for memory deficits in MS. J Neurol 259(7):1337–1346Google Scholar
  39. 39.
    Brenk A, Laun K, Haase CG (2008) Short-term cognitive training improves mental efficacy and mood in patients with multiple sclerosis. Eur Neurol 60:304–309PubMedCrossRefGoogle Scholar
  40. 40.
    Tesar N, Bandion K, Baumhackl U (2005) Efficacy of a neuropsychological training programme for patients with multiple sclerosis—a randomised controlled trial. Wien Klin Wochenschr 117:747–754PubMedCrossRefGoogle Scholar
  41. 41.
    Hildebrandt H, Lanz M, Hahn HK et al (2007) Cognitive training in MS: effects and relation to brain atrophy. Res Neurol Neurosci 25:33–43Google Scholar
  42. 42.
    Mendozzi L, Pugnetti L, Motta A, Barbieri E, Gambini A, Cazzullo CL (1998) Computer-assisted memory retraining of patients with multiple sclerosis. Ital J Neurol Sci 19:S431–S438CrossRefGoogle Scholar
  43. 43.
    DeLuca J, Chelune GJ, Tulsky DS, Lengenfelder J, Chiaravalloti ND (2004) Is speed of processing or working memory the primary information processing deficit in multiple sclerosis? J Clin Exp Neuropsychol 26:550–562PubMedCrossRefGoogle Scholar
  44. 44.
    Acevedo A, Loewenstein DA (2007) Nonpharmacological cognitive interventions in aging and dementia. J Geriatr Psychiatry Neurol 20(4):239–249PubMedCrossRefGoogle Scholar
  45. 45.
    Ball K, Edwards JD, Ross LA (2007) The impact of speed of processing training on cognitive and everyday functions. J Gerontol Ser B Psychol Sci Soc Sci 1:19–31CrossRefGoogle Scholar
  46. 46.
    Plohmann AM, Kappos L, Ammann W et al (1998) Computer assisted retraining of attentional impairments in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 64:455–462PubMedCrossRefGoogle Scholar
  47. 47.
    Solari A, Motta A, Mendozzi L et al (2004) Computer-aided retraining of memory and attention in people with multiple sclerosis: a randomized, double-blind controlled trial. J Neurol Sci 222:99–104PubMedCrossRefGoogle Scholar
  48. 48.
    Mattioli F, Stampatori C, Zanotti D, Parrinello G, Capra R (2010) Efficacy and specificity of intensive rehabilitation of attention and executive functions in multiple sclerosis. J Neurol Sci 288:101–105PubMedCrossRefGoogle Scholar
  49. 49.
    O’Brien A, Chiaravalloti N, Arango-Lasprilla JC, Lengenfelder J, DeLuca J (2007) An investigation of the differential effect of self-generation to improve learning and memory in multiple sclerosis and traumatic brain injury. Neuropsychol Rehabil 17:273–292PubMedCrossRefGoogle Scholar
  50. 50.
    Sastre-Garriga J, Alonso J, Renom M et al (2011) A functional magnetic resonance proof of concept pilot trial of cognitive rehabilitation in multiple sclerosis. Mult Scler 17:457–476PubMedCrossRefGoogle Scholar
  51. 51.
    Birnboim S, Miller A (2004) Cognitive strategies application of multiple sclerosis patients. Mult Scler 10:67–73PubMedCrossRefGoogle Scholar
  52. 52.
    Fink F, Rischkau E, Butt M, Klein J, Eling P, Hildebrandt H (2010) Efficacy of an executive function intervention programme in MS: a placebo-controlled and pseudo-randomized trial. Mult Scler 16:1148–1151PubMedCrossRefGoogle Scholar
  53. 53.
    Allen DN, Goldstein G, Heyman RA, Rondinelli T (1998) Teaching memory strategies to persons with multiple sclerosis. J Rehabil Res Dev 35:405–410PubMedGoogle Scholar
  54. 54.
    Brissart H, Leroy M, Debouverie M (2010) Cognitive rehabilitation in multiple sclerosis: preliminary results and presentation of a new program, PROCOG-SEP]. Rev Neurol (Paris) 166:406–411CrossRefGoogle Scholar
  55. 55.
    Chiaravalloti ND, DeLuca J (2002) Self-generation as a means of maximizing learning in multiple sclerosis: an application of the generation effect. Arch Phys Med Rehabil 83:1070–1079PubMedCrossRefGoogle Scholar
  56. 56.
    Shatil E, Metzer A, Horvitz O, Miller A (2010) Home-based personalized cognitive training in MS patients: a study of adherence and cognitive performance. Neuro Rehabil 26:143–153Google Scholar
  57. 57.
    Sumowski JF, Chiaravalloti N, DeLuca J (2010) Retrieval practice improves memory in multiple sclerosis: clinical application of the testing effect. Neuropsychology 24:267–272PubMedCrossRefGoogle Scholar
  58. 58.
    Vogt A, Kappos L, Calabrese P et al (2009) Working memory training in patients with multiple sclerosis. Restor Neurol Neurosci 27:225–235PubMedGoogle Scholar
  59. 59.
    Archibald CJ, Fisk JD (2000) Information processing efficiency in patients with multiple sclerosis. J Clin Exp Neuropsychol 22:686–701PubMedCrossRefGoogle Scholar
  60. 60.
    Rao SM (1989) On the nature of memory disturbance in multiple sclerosis. J Clin Exp Neuropsychol 11:699–712PubMedCrossRefGoogle Scholar
  61. 61.
    Geisler MW, Sliwinski M, Coyle PK, Masur DM, Doscher C, Krupp LB (1996) The effects of amantadine and pemoline on cognitive functioning in multiple sclerosis. Arch Neurol 53:185–188PubMedCrossRefGoogle Scholar
  62. 62.
    Smith A (1982) Symbol digit modalities test: manual. Western Psychological Services, Los AngelesGoogle Scholar
  63. 63.
    Benedict RH (2005) Effects of using same- versus alternate-form memory tests during short-interval repeated assessments in multiple sclerosis. J Int Neuropsychol Soc 11:727–736PubMedCrossRefGoogle Scholar
  64. 64.
    Harel Y, Appleboim N, Lavie M, Achiron A (2009) Single dose of methylphenidate improves cognitive performance in multiple sclerosis patients with impaired attention process. J Neurol Sci 276:38–40PubMedCrossRefGoogle Scholar
  65. 65.
    Benedict RH, Munschauer F, Zarevics P et al (2008) Effects of l-amphetamine sulfate on cognitive function in multiple sclerosis patients. J Neurol 255:848–852PubMedCrossRefGoogle Scholar
  66. 66.
    Morrow SA, Kaushik T, Zarevics P et al (2009) The effects of l-amphetamine sulfate on cognition in MS patients: results of a randomized controlled trial. J Neurol 256:1095–1102PubMedCrossRefGoogle Scholar
  67. 67.
    Sumowski JF, Chiaravalloti N, Erlanger D, Kaushik T, Benedict RH, Deluca J (2011) l-amphetamine improves memory in MS patients with objective memory impairment. Mult Scler 17(9):1141–1145PubMedCrossRefGoogle Scholar
  68. 68.
    Möller F, Poettgen J, Broemel F, Neuhaus A, Daumer M, Heesen C (2011) HAGIL (Hamburg Vigil Study): a randomized placebo-controlled double-blind study with modafinil for treatment of fatigue in patients with multiple sclerosis. Mult Scler 17(8):1002–1009PubMedCrossRefGoogle Scholar
  69. 69.
    Lange R, Volkmer M, Heesen C, Liepert J (2009) Modafinil effects in multiple sclerosis patients with fatigue. J Neurol 256:645–650PubMedCrossRefGoogle Scholar
  70. 70.
    Brickenkamp R (2002) Test d2. Aufmerksamkeits-Belastungs-Test, 9th edn. The d2 test. Test of attention under pressure, 9th edn. Hogrefe, GöttingenGoogle Scholar
  71. 71.
    Stankoff B, Waubant E, Confavreux C et al (2005) Modafinil for fatigue in MS: a randomized placebo-controlled double-blind study. Neurology 64:1139–1143PubMedCrossRefGoogle Scholar
  72. 72.
    Wilken JA, Sullivan C, Wallin M et al (2008) Treatment of multiple sclerosis-related cognitive problems with adjunctive modafinil: rationale and preliminary supportive data. Int J MS Care 10:1–10CrossRefGoogle Scholar
  73. 73.
    Waxman SG (1982) Membranes, myelin, and the pathophysiology of multiple sclerosis. N Engl J Med 306:1529–1533PubMedCrossRefGoogle Scholar
  74. 74.
    Bever CT Jr, Anderson PA, Leslie J et al (1996) Treatment with oral 3,4 diaminopyridine improves leg strength in multiple sclerosis patients: results of a randomized, double- blind, placebo-controlled, crossover trial. Neurology 47:1457–1462PubMedCrossRefGoogle Scholar
  75. 75.
    Bever CT Jr, Young D, Anderson PA et al (1994) The effects of 4-aminopyridine in multiple sclerosis patients: results of a randomized, placebo-controlled, double-blind, concentration-controlled, crossover trial. Neurology 44:1054–1059PubMedCrossRefGoogle Scholar
  76. 76.
    Rossini PM, Pasqualetti P, Pozzilli C et al (2001) Fatigue in progressive multiple sclerosis: results of a randomized, double-blind, placebo-controlled, crossover trial of oral 4-aminopyridine. Mult Scler 7:354–358PubMedGoogle Scholar
  77. 77.
    Krupp LB, Christodoulou C, Melville P, Scherl WF, MacAllister WS, Elkins LE (2004) Donepezil improved memory in multiple sclerosis in a randomized clinical trial. Neurology 63:1579–1585PubMedCrossRefGoogle Scholar
  78. 78.
    Krupp LB, Christodoulou C, Melville P et al (2011) Multicenter randomized clinical trial of donepezil for memory impairment in multiple sclerosis. Neurology 76:1500–1507PubMedCrossRefGoogle Scholar
  79. 79.
    Shaygannejad V, Janghorbani M, Ashtari F, Zanjani HA, Zakizade N (2008) Effects of rivastigmine on memory and cognition in multiple sclerosis. Can J Neurol Sci 35:476–481PubMedGoogle Scholar
  80. 80.
    Smits RC, Emmen HH, Bertelsmann FW, Kulig BM, van Loenen AC, Polman CH (1994) The effects of 4-aminopyridine on cognitive function in patients with multiple sclerosis: a pilot study. Neurology 44:1701–1705PubMedCrossRefGoogle Scholar
  81. 81.
    Lovera JF, Frohman E, Brown TR et al (2010) Memantine for cognitive impairment in multiple sclerosis: a randomized placebo-controlled trial. Mult Scler 16(6):715–723PubMedCrossRefGoogle Scholar
  82. 82.
    Gold R, Wolinsky JS, Amato MP, Comi G (2010) Evolving expectations around early management of multiple sclerosis. Ther Adv Neurol Disord 3(6):351–367PubMedCrossRefGoogle Scholar
  83. 83.
    Pliskin NH, Hamer DP, Goldstein DS, Towle VL, Reder AT, Noronha A (1996) Improved delayed visual reproduction test performance in multiple sclerosis patients receiving interferon beta-1b. Neurology 47:1463–1468PubMedCrossRefGoogle Scholar
  84. 84.
    Barak Y, Achiron A (2002) Effect of interferon-beta-1b on cognitive functions in multiple sclerosis. Eur Neurol 47:11–14PubMedCrossRefGoogle Scholar
  85. 85.
    Fischer JS, Priore RL, Jacobs LD et al (2000) Neuropsychological effects of interferon beta-1a in relapsing multiple sclerosis. Multiple Sclerosis Collaborative Research Group. Ann Neurol 48:885–892PubMedCrossRefGoogle Scholar
  86. 86.
    Patti F, Amato MP, Bastianello S et al (2010) Effects of immunomodulatory treatment with subcutaneous interferon beta-1a on cognitive decline in mildly disabled patients with relapsing-remitting multiple sclerosis. Mult Scler 16:68–77PubMedCrossRefGoogle Scholar
  87. 87.
    Weinstein A, Scwid SI, Schiffer RB, McDermott MP, Giang DW, Goodman AD (1999) Neuropsychologic status in multiple sclerosis after treatment with glatiramer. Arch Neurol 56:319–324PubMedCrossRefGoogle Scholar
  88. 88.
    Schwid SR, Goodman AD, Weinstein A, McDermott MP, Johnson KP (2007) Cognitive function in relapsing multiple sclerosis: minimal changes in a 10-year clinical trial. J Neurol Sci 255:57–63PubMedCrossRefGoogle Scholar
  89. 89.
    Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD, Giovannoni G, Wajgt A, Toal M, Lynn F, Panzara MA, Sandrock AW, AFFIRM Investigators (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354(9):899–910PubMedCrossRefGoogle Scholar
  90. 90.
    Rudick RA, Stuart WH, Calabresi PA, SENTINEL Investigators et al (2006) Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med 354(9):911–923PubMedCrossRefGoogle Scholar
  91. 91.
    Mattioli F, Stampatori C, Capra R (2011) The effect of natalizumab on cognitive function in patients with relapsing-remitting multiple sclerosis: preliminary results of a 1-year follow-up study. Neurol Sci 32:83–88PubMedCrossRefGoogle Scholar
  92. 92.
    Cohen JA, Barkhof F, Comi G et al (2010) Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 362(5):402–415PubMedCrossRefGoogle Scholar
  93. 93.
    Kappos L, Polman C, Pozzilli C, Thompson A, Beckmann K, Dahlke F, European Study Group in Final analysis of the European multicenter trial on IFNbeta-1b in secondary-progressive MS (2001) Interferon beta-1b in Secondary-Progressive MS. Neurology 57(11):1969–1975PubMedCrossRefGoogle Scholar
  94. 94.
    Panitch H, Miller A, Paty D, Weinshenker B, North American Study Group on Interferon beta-1b in Secondary Progressive MS (2004) Interferon beta-1b in secondary progressive MS: results from a 3-year controlled study. Neurology 63(10):1788–1795PubMedCrossRefGoogle Scholar
  95. 95.
    Cohen JA, Cutter GR, Fischer JS et al (2002) Benefit of interferon beta-1a on MSFC progression in secondary progressive MS. Neurology 59:679–687PubMedCrossRefGoogle Scholar
  96. 96.
    Leary SM, Miller DH, Stevenson VL, Brex PA, Chard DT, Thompson AJ (2003) Interferon beta-1a in primary progressive MS: an exploratory, randomized, controlled trial. Neurology 60(1):44–51PubMedCrossRefGoogle Scholar
  97. 97.
    Montalban X, Sastre-Garriga J, Tintoré M et al (2009) A single-center, randomized, double-blind, placebo-controlled study of interferon beta-1b on primary progressive and transitional multiple sclerosis. Mult Scler 15:1195–1205PubMedCrossRefGoogle Scholar
  98. 98.
    Wolinsky JS, Narayana PA, O’Connor P et al (2007) Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann Neurol 61(1):14–24PubMedCrossRefGoogle Scholar
  99. 99.
    Kappos L, Polman CH, Freedman MS et al (2006) Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology 67(7):1242–1249PubMedCrossRefGoogle Scholar
  100. 100.
    Kappos L, Freedman MS, Polman CH, BENEFIT Study Group et al (2007) Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet 370(9585):389–397PubMedCrossRefGoogle Scholar
  101. 101.
    Kappos L, Freedman MS, Polman CH et al (2009) Long-term effect of early treatment with interferon beta-1b after a first clinical event suggestive of multiple sclerosis: 5-year active treatment extension of the phase 3 BENEFIT trial. Lancet Neurol 8(11):987–997PubMedCrossRefGoogle Scholar
  102. 102.
    Langdon DW, Amato MP, Boringa J, Brochet B, Foley F, Fredrikson S, Hämäläinen P, Hartung HP, Krupp L, Penner IK, Reder AT, Benedict RH (2012) Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Mult Scler 18(6):891–898PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maria Pia Amato
    • 1
    Email author
  • Dawn Langdon
    • 2
  • Xavier Montalban
    • 3
  • Ralph H. B. Benedict
    • 4
  • John DeLuca
    • 5
  • Lauren B. Krupp
    • 6
  • Alan J. Thompson
    • 7
  • Giancarlo Comi
    • 8
  1. 1.Department of Neurological and Psychiatric SciencesUniversity of FlorenceFlorenceItaly
  2. 2.Department of Psychology, Royal HollowayUniversity of LondonEghamUK
  3. 3.Unit of Clinical Neuroimmunology, Multiple Sclerosis Center of CataloniaVall d′Hebron University HospitalBarcelonaSpain
  4. 4.Department of NeurologyState University of New York at Buffalo School of Medicine and Biomedical SciencesBuffaloUSA
  5. 5.Kessler Foundation Research Center, Department of Physical Medicine and RehabilitationUniversity of Medicine and Dentistry of New Jersey-New Jersey Medical SchoolNew YorkUSA
  6. 6.Department of NeurologyStony Brook University Medical CenterStony BrookUSA
  7. 7.Department of Brain Repair and Rehabilitation, Institute of NeurologyUniversity College LondonLondonUK
  8. 8.Department of NeurologyInstitute of Experimental NeurologyMilanItaly

Personalised recommendations