Journal of Neurology

, Volume 259, Issue 11, pp 2488–2490 | Cite as

Molecular evaluation of human Ubiquilin 2 gene PXX domain in familial frontotemporal dementia patients

  • Isabel Hernández
  • Anna Espinosa
  • Luis Miguel Real
  • Jose Jorge Galán
  • Ana Mauleón
  • Maiteé Rosende Roca
  • Lluís Tárraga
  • Agustín RuizEmail author
  • Mercè Boada
Letter to the Editors

Dear Sirs,

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) phenotypes appear in the same pedigrees [1] and can occur in the same individuals [2] (FTDALS, OMIM 105550). In fact about 2–3 % of ALS patients develop dementia [3]. Consequently, in some individuals, there appears to be a common genetic etiology for both diseases. Genetic variation identified in GRN, FUS, TDP-43, and more recently, in C9ORF72 and UBQLN2 genes has been associated to familial ALS (FALS, OMIN 104105), familial FTD (OMIM 600274) and/or FTDALS consistent with the notion that both disorders may share genetic components and, probably, functional pathogenic mechanisms [4, 5, 6, 7, 8].

UBQLN2 gene was recently identified by Deng et al. [7] as a novel dominant but not fully penetrant X-linked FTDALS gene. Specifically, five segregating mutations in four different proline residues within the PXX repeat domain of UBQLN2gene were identified in families afflicted with ALS/dementia. Importantly, the...


Amyotrophic Lateral Sclerosis Amyotrophic Lateral Sclerosis Patient Frontotemporal Dementia Progressive Supranuclear Palsy Familial Amyotrophic Lateral Sclerosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank patients who participated in this project. We are indebted to Trinitat Port-Carbó and her family who are supporting Fundació ACE research programs.

Conflicts of interest


Supplementary material

415_2012_6568_MOESM1_ESM.ppt (620 kb)
Supplementary material 1 (PPT 619 kb)


  1. 1.
    Pinsky L, Finlayson MH, Libman I, Scott BH (1975) Familial amyotrophic lateral sclerosis with dementia: a second Canadian family. Clin Genet 7:186–191PubMedCrossRefGoogle Scholar
  2. 2.
    Robertson EE (1953) Progressive bulbar paralysis showing heredofamilial incidence and intellectual impairment. AMA Arch Neurol Psychiatry 69:196–207PubMedGoogle Scholar
  3. 3.
    Fecto F, Siddique T (2011) SIGMAR1 mutations, genetic heterogeneity at the chromosome 9p locus, and the expanding etiological diversity of amyotrophic lateral sclerosis. Ann Neurol 70:867–870PubMedCrossRefGoogle Scholar
  4. 4.
    Ito D, Suzuki N (2011) Conjoint pathologic cascades mediated by ALS/FTLD-U linked RNA-binding proteins TDP-43 and FUS. Neurology 77:1636–1643PubMedCrossRefGoogle Scholar
  5. 5.
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256PubMedCrossRefGoogle Scholar
  6. 6.
    Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268PubMedCrossRefGoogle Scholar
  7. 7.
    Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–215PubMedCrossRefGoogle Scholar
  8. 8.
    Sleegers K, Brouwers N, Maurer-Stroh S, van Es MA, Van Damme P, van Vught PW, van der Zee J, Serneels S, De Pooter T, Van den Broeck M et al (2008) Progranulin genetic variability contributes to amyotrophic lateral sclerosis. Neurology 71:253–259PubMedCrossRefGoogle Scholar
  9. 9.
    Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12:996–1006PubMedGoogle Scholar
  10. 10.
    Zhao L, Rosales C, Seburn K, Ron D, Ackerman SL (2010) Alteration of the unfolded protein response modifies neurodegeneration in a mouse model of Marinesco-Sjogren syndrome. Hum Mol Genet 19:25–35PubMedCrossRefGoogle Scholar
  11. 11.
    Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T et al (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395:451–452PubMedCrossRefGoogle Scholar
  12. 12.
    Slifer MA, Martin ER, Haines JL, Pericak-Vance MA (2005) The ubiquilin 1 gene and Alzheimer’s disease. N Engl J Med 352:2752–2753 author reply 2752-2753PubMedCrossRefGoogle Scholar
  13. 13.
    Daoud H, Rouleau GA (2011) A role for ubiquilin 2 mutations in neurodegeneration. Nat Rev Neurol 7:599–600PubMedCrossRefGoogle Scholar
  14. 14.
    Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554PubMedCrossRefGoogle Scholar
  15. 15.
    Bellosillo B, Tusquets I (2006) Pitfalls and caveats in BRCA sequencing. Ultrastruct Pathol 30:229–235PubMedCrossRefGoogle Scholar
  16. 16.
    Yamakawa H, Nakajima D, Ohara O (1996) Identification of sequence motifs causing band compressions on human cDNA sequencing. DNA Res 3:81–86PubMedCrossRefGoogle Scholar
  17. 17.
    Millecamps S, Corcia P, Cazeneuve C, Boillee S, Seilhean D, Danel-Brunaud V, Vandenberghe N, Pradat PF, Le Forestier N, Lacomblez L et al (2011) Mutations in UBQLN2 are rare in French amyotrophic lateral sclerosis. Neurobiol Aging 33(4):839.e1–839.e3Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Isabel Hernández
    • 1
  • Anna Espinosa
    • 1
  • Luis Miguel Real
    • 2
  • Jose Jorge Galán
    • 2
  • Ana Mauleón
    • 1
  • Maiteé Rosende Roca
    • 1
  • Lluís Tárraga
    • 1
  • Agustín Ruiz
    • 1
    Email author
  • Mercè Boada
    • 1
  1. 1.Memory Clinic of Fundació ACEInstitut Català de Neurociències AplicadesBarcelonaSpain
  2. 2.Department of Structural GenomicsNeocodexSevillaSpain

Personalised recommendations