Advertisement

Journal of Neurology

, Volume 259, Issue 11, pp 2278–2286 | Cite as

Frontotemporal lobar degeneration: current knowledge and future challenges

  • Chiara Cerami
  • Elio Scarpini
  • Stefano F. Cappa
  • Daniela Galimberti
Review

Abstract

Frontotemporal lobar degeneration (FTLD) is one of the most frequent neurodegenerative disorders with a presenile onset. It presents with a spectrum of clinical manifestations, ranging from behavioral and executive impairment to language disorders and motor dysfunction. New diagnostic criteria identified two main cognitive syndromes: behavioral variant frontotemporal dementia (bvFTD) and primary progressive aphasia. Regarding bvFTD, new criteria include the use of biomarkers. According to them, bvFTD can be classified in “possible” (clinical features only), “probable” (inclusion of imaging biomarkers) and “definite” (in the presence of a known causal mutation or at autopsy). Familial aggregation is frequently reported in FTLD, and about 10 % of cases have an autosomal dominant transmission. Microtubule-associated protein tau gene mutations have been the first ones identified, and are generally associated with early onset (40–50 years) and with the bvFTD phenotype. More recently, progranulin gene mutations were recognized in association with the familial form of FTLD and a hexanucleotide repetition in C9ORF72 has been shown to be responsible for familial FTLD and amyotrophic lateral sclerosis. In addition, other genes are linked to rare cases of familiar FTLD. Lastly, a number of genetic risk factors for sporadic forms have also been identified.

Keywords

Frontotemporal lobar degeneration Tau Progranulin (GRNC9ORF72 Genetics Risk factor 

Notes

Conflicts of interest

None.

References

  1. 1.
    Rosen HJ, Allison SC, Ogar JM, Amici S, Rose K, Dronkers N et al (2006) Behavioral features in semantic dementia vs other forms of progressive aphasias. Neurology 67:1752–1756CrossRefPubMedGoogle Scholar
  2. 2.
    Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554CrossRefPubMedGoogle Scholar
  3. 3.
    Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477CrossRefPubMedGoogle Scholar
  4. 4.
    Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014CrossRefPubMedGoogle Scholar
  5. 5.
    Piguet O, Hornberger M, Mioshi E, Hodges JR (2011) Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management. Lancet Neurol 10:162–172CrossRefPubMedGoogle Scholar
  6. 6.
    Scarpini E, Galimberti D, Guidi I, Bresolin N, Scheltens P (2006) Progressive, isolated language disturbance: its significance in a 65 year-old-man. A case report with implications for treatment and review of literature. J Neurol Sci 240:45–51CrossRefPubMedGoogle Scholar
  7. 7.
    Rankin KP, Kramer JH, Miller BL (2005) Patterns of cognitive and emotional empathy in frontotemporal lobar degeneration. Cogn Behav Neurol 18:28–36CrossRefPubMedGoogle Scholar
  8. 8.
    Rankin KP, Gorno-Tempini ML, Allison SC, Stanley CM, Glenn S, Weiner MW, Miller BL (2006) Structural anatomy of empathy in neurodegenerative disease. Brain 129:2945–2956CrossRefPubMedGoogle Scholar
  9. 9.
    Gorno-Tempini ML, Dronkers NF, Rankin KP, Ogar JM, Phengrasamy L, Rosen HJ et al (2004) Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 55:335–346CrossRefPubMedGoogle Scholar
  10. 10.
    Gorno-Tempini ML, Brambati SM, Ginex V, Ogar J, Dronkers NF, Marcone A et al (2008) The logopenic/phonological variant of primary progressive aphasia. Neurology 71:1227–1234CrossRefPubMedGoogle Scholar
  11. 11.
    Rabinovici GD, Jagust WJ, Furst AJ, Ogar JM, Racine CA, Mormino EC et al (2008) Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann Neurol 64:388–401CrossRefPubMedGoogle Scholar
  12. 12.
    Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58:1615–1621CrossRefPubMedGoogle Scholar
  13. 13.
    Bird T, Knopman D, VanSwieten J, Rosso S, Feldman H, Tanabe H, Graff-Raford N, Geschwind D, Verpillat P, Hutton M (2003) Epidemiology and genetics of frontotemporal dementia/Pick’s disease. Ann Neurol 54:S29–S31CrossRefPubMedGoogle Scholar
  14. 14.
    Goldman JS, Farmer JM, Wood EM, Johnson JK, Boxer A, Neuhaus J et al (2005) Comparison of family histories in FTLD subtypes and related tauopathies. Neurology 65:1817–1819CrossRefPubMedGoogle Scholar
  15. 15.
    Snowden JS, Neary D, Mann DM (2002) Frontotemporal dementia. Br J Psychiatry 180:140–143CrossRefPubMedGoogle Scholar
  16. 16.
    Pickering-Brown SM (2007) The complex aetiology of frontotemporal lobar degeneration. Exp Neurol 114:39–47Google Scholar
  17. 17.
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256CrossRefPubMedGoogle Scholar
  18. 18.
    Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS–FTD. Neuron 72:257–268CrossRefPubMedGoogle Scholar
  19. 19.
    Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G et al (2012) A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11(1):54–65CrossRefPubMedGoogle Scholar
  20. 20.
    Lynch T, Sano M, Marder KS, Bell KL, Foster NL, Defendini RF et al (1994) Clinical characteristics of a family with chromosome 17-linked disinhibition–dementia–parkinsonism–amyotrophy complex. Neurology 44:1878–1884CrossRefPubMedGoogle Scholar
  21. 21.
    Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705CrossRefPubMedGoogle Scholar
  22. 22.
    Poorkaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L, Andreadis A et al (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 43:815–825CrossRefPubMedGoogle Scholar
  23. 23.
    Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA 95:7737–7741CrossRefPubMedGoogle Scholar
  24. 24.
    Ingram EM, Spillantini MG (2002) Tau gene mutations: dissecting the pathogenesis of FTDP-17. Trends Mol Med 8:555–562CrossRefPubMedGoogle Scholar
  25. 25.
    Rademakers R, Cruts M, van Broeckhoven C (2004) The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Hum Mutat 24:277–295CrossRefPubMedGoogle Scholar
  26. 26.
    Rademakers R, Cruts M, Dermaut B, Sleegers K, Rosso SM, Van den Broeck M et al (2002) Tau negative frontal lobe dementia at 17q21: significant finemapping of the candidate region to a 4.8 cM interval. Mol Psychiatry 7:1064–1074CrossRefPubMedGoogle Scholar
  27. 27.
    Goedert M, Jakes R (2005) Mutations causing neurodegenerative tauopathies. Biochim Biophys Acta 1739:240–250CrossRefPubMedGoogle Scholar
  28. 28.
    Buée L, Delacourte A (1999) Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick’s disease. Brain Pathol 9:681–693CrossRefPubMedGoogle Scholar
  29. 29.
    Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526CrossRefPubMedGoogle Scholar
  30. 30.
    Yancopoulou D, Spillantini MG (2003) Tau protein in familial and sporadic diseases. Neuromol Med 4:37–48CrossRefGoogle Scholar
  31. 31.
    Villa C, Ghezzi L, Pietroboni AM, Fenoglio C, Cortini F, Serpente M et al (2011) A novel MAPT mutation associated with the clinical phenotype of progressive nonfluent aphasia. J Alzheimers Dis 26:19–26PubMedGoogle Scholar
  32. 32.
    van Swieten J, Spillantini MG (2007) Hereditary frontotemporal dementia caused by Tau gene mutations. Brain Pathol 17:63–73CrossRefPubMedGoogle Scholar
  33. 33.
    van Swieten JC, Heutink P (2008) Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia. Lancet Neurol 7:965–974CrossRefPubMedGoogle Scholar
  34. 34.
    Boeve BF, Hutton M (2008) Refining frontotemporal dementia with parkinsonism linked to chromosome 17: introducing FTDP-17 (MAPT) and FTDP-17 (PGRN). Arch Neurol 65:460–464CrossRefPubMedGoogle Scholar
  35. 35.
    Josephs KA, Whitwell JL, Knopman DS, Boeve BF, Vemuri P, Senjem ML et al (2009) Two distinct subtypes of right temporal variant frontotemporal dementia. Neurology 73:1443–1450CrossRefPubMedGoogle Scholar
  36. 36.
    Lendon CL, Lynch T, Norton J, McKeel DW Jr, Busfield F, Craddock N et al (1998) Hereditary dysphasic disinhibition dementia: a frontotemporal dementia linked to 17q21–22. Neurology 50:1546–1555CrossRefPubMedGoogle Scholar
  37. 37.
    Rosso SM, Kamphorst W, de Graaf B, Willemsen R, Ravid R, Niermeijer MF et al (2001) Familial frontotemporal dementia with ubiquitin-positive inclusions is linked to chromosome 17q21–22. Brain 124:1948–1957CrossRefPubMedGoogle Scholar
  38. 38.
    van der Zee J, Rademakers R, Engelborghs S, Gijselinck I, Bogaerts V, Vandenberghe R et al (2006) A Belgian ancestral haplotype harbours a highly prevalent mutation for 17q21-linked tau-negative FTLD. Brain 129:841–852CrossRefPubMedGoogle Scholar
  39. 39.
    Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919CrossRefPubMedGoogle Scholar
  40. 40.
    Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924CrossRefPubMedGoogle Scholar
  41. 41.
    He Z, Bateman A (2003) Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med 81:600–612CrossRefPubMedGoogle Scholar
  42. 42.
    Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM et al (2002) Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell 111:867–878CrossRefPubMedGoogle Scholar
  43. 43.
    Gass J, Cannon A, Mackenzie IR, Boeve B, Baker M, Adamson J (2006) Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet 15:2988–3001CrossRefPubMedGoogle Scholar
  44. 44.
    Mackenzie IR, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E et al (2011) A harmonized classification system for FTLD–TDP pathology. Acta Neuropathol 122(1):111–113CrossRefPubMedGoogle Scholar
  45. 45.
    Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133CrossRefPubMedGoogle Scholar
  46. 46.
    Snowden JS, Pickering-Brown SM, Mackenzie IR, Richardson AM, Varma A, Neary D, Mann DM (2006) Progranulin gene mutations associated with frontotemporal dementia and progressive non-fluent aphasia. Brain 129:3091–3102CrossRefPubMedGoogle Scholar
  47. 47.
    Yu CE, Bird TD, Bekris LM, Montine TJ, Leverenz JB, Steinbart E et al (2010) The spectrum of mutations in progranulin: a collaborative study screening 545 cases of neurodegeneration. Arch Neurol 67:161–170CrossRefPubMedGoogle Scholar
  48. 48.
    Carecchio M, Fenoglio C, De Riz M, Guidi I, Comi C, Cortini F et al (2009) Progranulin plasma levels as potential biomarker for the identification of GRN deletion carriers. A case with atypical onset as clinical amnestic mild cognitive impairment converted to Alzheimer’s disease. J Neurol Sci 287:291–293CrossRefPubMedGoogle Scholar
  49. 49.
    Carecchio M, Fenoglio C, Cortini F, Comi C, Benussi L, Ghidoni R et al (2011) Cerebrospinal fluid biomarkers in progranulin mutations carriers. J Alzheimers Dis 27(4):781–790PubMedGoogle Scholar
  50. 50.
    Pietroboni AM, Fumagalli GG, Ghezzi L, Fenoglio C, Cortini F, Serpente M et al (2011) Phenotypic heterogeneity of the GRN Asp22 fs mutation in a large Italian kindred. J Alzheimers Dis 24:253–259PubMedGoogle Scholar
  51. 51.
    Rainero I, Rubino E, Negro E, Gallone S, Galimberti D, Gentile S et al (2011) Heterosexual pedophilia in a frontotemporal dementia patient with a mutation in the progranulin gene. Biol Psychiatry 70:43–44CrossRefGoogle Scholar
  52. 52.
    Cerami C, Marcone A, Galimberti D, Villa C, Scarpini E, Cappa SF (2011) From genotype to phenotype: two cases of genetic frontotemporal lobar degeneration with premorbid bipolar disorder. J Alzheimers Dis 27(4):791–797PubMedGoogle Scholar
  53. 53.
    Ghidoni R, Benussi L, Glionna M, Franzoni M, Binetti G (2008) Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. Neurology 71:1235–1239CrossRefPubMedGoogle Scholar
  54. 54.
    Finch N, Baker M, Crook R, Swanson K, Kuntz K, Surtees R et al (2009) Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain 132:583–591CrossRefPubMedGoogle Scholar
  55. 55.
    Hosler BA, Siddique T, Sapp PC, Sailor W, Huang MC, Hossain A et al (2000) Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22. JAMA 284:1664–1669CrossRefPubMedGoogle Scholar
  56. 56.
    Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211CrossRefPubMedGoogle Scholar
  57. 57.
    Le Ber I, Camuzat A, Hannequin D, Pasquier F, Guedj E, Rovelet-Lecrux A et al (2008) Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain 131:732–746CrossRefPubMedGoogle Scholar
  58. 58.
    Morita M, Al-Chalabi A, Andersen PM, Hosler B, Sapp P, Englund E et al (2006) A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology 66:839–844CrossRefPubMedGoogle Scholar
  59. 59.
    Rollinson S, Mead S, Snowden J, Richardson A, Rohrer J, Halliwell N (2011) Frontotemporal lobar degeneration genome wide association study replication confirms a risk locus shared with amyotrophic lateral sclerosis. Neurobiol Aging 32:758e1–758e7Google Scholar
  60. 60.
    Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin containing protein. Nat Genet 36:377–381CrossRefPubMedGoogle Scholar
  61. 61.
    Kimonis VE, Fulchiero E, Vesa J, Watts G (2008) VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. Biochim Biophys Acta 1782:744–748CrossRefPubMedGoogle Scholar
  62. 62.
    Skibinski G, Parkinson NJ, Brown JM, Chakrabarti L, Lloyd SL, Hummerich H et al (2005) Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet 37:806–808CrossRefPubMedGoogle Scholar
  63. 63.
    Holm IE, Englund E, Mackenzie IR, Johannsen P, Isaacs AM (2007) A reassessment of the neuropathology of frontotemporal dementia linked to chromosome 3. J Neuropathol Exp Neurol 66:884–891CrossRefPubMedGoogle Scholar
  64. 64.
    Gydesen S, Brown JM, Brun A, Chakrabarti L, Gade A, Johannsen P et al (2002) Chromosome 3 linked frontotemporal dementia (FTD-3). Neurology 59:1585–1594CrossRefPubMedGoogle Scholar
  65. 65.
    Parkinson N, Ince PG, Smith MO, Highley R, Skibinski G, Andersen PM et al (2006) ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67:1074–1077CrossRefPubMedGoogle Scholar
  66. 66.
    Pesiridis G, Lee VMY, Trojanowski JQ (2009) Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Gen 18:R156–R162CrossRefPubMedGoogle Scholar
  67. 67.
    Benajiba L, Le Ber I, Camuzat A, Lacoste M, Thomas-Anterion C, Couratier P et al (2009) TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann Neurol 65:470–473CrossRefPubMedGoogle Scholar
  68. 68.
    Borroni B, Bonvicini C, Alberici A, Buratti E, Agosti C, Archetti S et al (2009) Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Human Mutat 30:E974–E983CrossRefGoogle Scholar
  69. 69.
    Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208CrossRefPubMedGoogle Scholar
  70. 70.
    Chiò A, Restagno G, Brunetti M, Ossola I, Calvo A, Mora G et al (2009) Two Italian kindreds with familial amyotrophic lateral sclerosis due to FUS mutation. Neurobiol Aging 30:1272–1275CrossRefPubMedGoogle Scholar
  71. 71.
    Groen EJ, van Es MA, van Vught PW, Spliet WG, van Engelen-Lee J, de Visser M et al (2010) FUS mutations in familial amyotrophic lateral sclerosis in the Netherlands. Arch Neurol 67:224–230CrossRefPubMedGoogle Scholar
  72. 72.
    Van Langenhove T, van der Zee J, Sleegers K, Engelborghs S, Vandenberghe R, Gijselinck I et al (2010) Genetic contribution of FUS to frontotemporal lobar degeneration. Neurology 74:366–371CrossRefPubMedGoogle Scholar
  73. 73.
    Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–215CrossRefPubMedGoogle Scholar
  74. 74.
    Bernardi L, Maletta RG, Tomaino C, Smirne N, Di Natale M, Perri M et al (2006) The effects of APOE and tau gene variability on risk of frontotemporal dementia. Neurobiol Aging 27:702–709CrossRefPubMedGoogle Scholar
  75. 75.
    Fabre SF, Forsell C, Viitanen M, Sjögren M, Wallin A, Blennow K et al (2001) Clinic-based cases with frontotemporal dementia show increased cerebrospinal fluid tau and high apolipoprotein E epsilon4 frequency, but no tau gene mutations. Exp Neurol 168:413–418CrossRefPubMedGoogle Scholar
  76. 76.
    Farrer LA, Abraham CR, Volicer L, Foley EJ, Kowall NW, McKee AC, Wells JM (1995) Allele epsilon 4 of apolipoprotein E shows a dose effect on age at onset of Pick disease. Exp Neurol 136:162–170CrossRefPubMedGoogle Scholar
  77. 77.
    Gustafson L, Abrahamson M, Grubb A, Nilsson K, Fex G (1997) Apolipoprotein-E genotyping in Alzheimer’s disease and frontotemporal dementia. Dement Geriatr Cogn Disord 8:240–243CrossRefPubMedGoogle Scholar
  78. 78.
    Helisalmi S, Linnaranta K, Lehtovirta M, Mannermaa A, Heinonen O, Ryynänen M et al (1996) Apolipoprotein E polymorphism in patients with different neurodegenerative disorders. Neurosci Lett 205:61–64CrossRefPubMedGoogle Scholar
  79. 79.
    Stevens M, van Duijn CM, de Knijff P, van Broeckhoven C, Heutink P, Oostra BA et al (1997) Apolipoprotein E gene and sporadic frontal lobe dementia. Neurology 48:1526–1529CrossRefPubMedGoogle Scholar
  80. 80.
    Geschwind D, Karrim J, Nelson SF, Miller B (1998) The apolipoprotein E epsilon4 allele is not a significant risk factor for frontotemporal dementia. Ann Neurol 44:134–138CrossRefPubMedGoogle Scholar
  81. 81.
    Riemenschneider M, Diehl J, Müller U, Förstl H, Kurz A (2002) Apolipoprotein E polymorphism in German patients with frontotemporal degeneration. J Neurol Neurosurg Psychiatry 72:639–641CrossRefPubMedGoogle Scholar
  82. 82.
    Short RA, Graff-Radford NR, Adamson J, Baker M, Hutton M (2002) Differences in tau and apolipoprotein E polymorphism frequencies in sporadic frontotemporal lobar degeneration syndromes. Arch Neurol 59:611–615CrossRefPubMedGoogle Scholar
  83. 83.
    Srinivasan R, Davidson Y, Gibbons L, Payton A, Richardson AM, Varma A et al (2006) The apolipoprotein E epsilon4 allele selectively increases the risk of frontotemporal lobar degeneration in males. J Neurol Neurosurg Psychiatry 77:154–158CrossRefPubMedGoogle Scholar
  84. 84.
    Forman MS, Farmer J, Johnson JK, Clark CM, Arnold SE, Coslett HB et al (2006) Frontotemporal dementia: clinicopathological correlations. Ann Neurol 59(6):952–962CrossRefPubMedGoogle Scholar
  85. 85.
    Engelborghs S, Dermaut B, Goeman J, Saerens J, Mariën P, Pickut BA et al (2003) Prospective Belgian study of neurodegenerative and vascular dementia: APOE genotype effects. J Neurol Neurosurg Psychiatry 74:1148–1151CrossRefPubMedGoogle Scholar
  86. 86.
    Verpillat P, Camuzat A, Hannequin D, Thomas-Anterion C, Puel M, Belliard S et al (2002) Apolipoprotein E gene in frontotemporal dementia: an association study and meta-analysis. Eur J Hum Genet 10:399–405CrossRefPubMedGoogle Scholar
  87. 87.
    Conrad C, Andreadis A, Trojanowski JQ, Dickson DW, Kang D, Chen X et al (1997) Genetic evidence for the involvement of tau in progressive supranuclear palsy. Ann Neurol 41:277–281CrossRefPubMedGoogle Scholar
  88. 88.
    Baker M, Litvan I, Houlden H, Adamson J, Dickson D, Perez-Tur J et al (1999) Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet 8:711–715CrossRefPubMedGoogle Scholar
  89. 89.
    Di Maria E, Tabaton M, Vigo T, Abbruzzese G, Bellone E, Donati C et al (2000) Corticobasal degeneration shares a common genetic background with progressive supranuclear palsy. Ann Neurol 47:374–377CrossRefPubMedGoogle Scholar
  90. 90.
    Rademakers R, Eriksen JL, Baker M, Robinson T, Ahmed Z, Lincoln SJ et al (2008) Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP-43-positive frontotemporal dementia. Human Mol Genet 17:3631–3642CrossRefGoogle Scholar
  91. 91.
    Rollinson S, Rohrer JD, van der Zee J, Sleegers K, Mead S, Engelborghs S et al (2011) No association of PGRN 3′UTR rs5848 in frontotemporal lobar degeneration. Neurobiol Aging 32:754–755CrossRefPubMedGoogle Scholar
  92. 92.
    Galimberti D, Fenoglio C, Cortini F, Serpente M, Venturelli E, Villa C et al (2010) GRN variability contributes to sporadic frontotemporal lobar degeneration. J Alzheimers Dis 19:171–177PubMedGoogle Scholar
  93. 93.
    Galimberti D, Venturelli E, Villa C, Fenoglio C, Clerici F, Marcone A et al (2009) MCP-1 A-2518G polymorphism: effect on susceptibility for frontotemporal lobar degeneration and on cerebrospinal fluid MCP-1 levels. J Alzheimers Dis 17:125–133PubMedGoogle Scholar
  94. 94.
    Venturelli E, Villa C, Fenoglio C, Clerici F, Marcone A, Ghidoni R et al (2009) The NOS3 G894T (Glu298Asp) polymorphism is a risk factor for frontotemporal lobar degeneration. Eur J Neurol 16:37–42CrossRefPubMedGoogle Scholar
  95. 95.
    Venturelli E, Villa C, Scarpini E, Fenoglio C, Guidi I, Lovati C et al (2008) Neuronal nitric oxide synthase C276T polymorphism increases the risk for frontotemporal lobar degeneration. Eur J Neurol 15:77–81PubMedGoogle Scholar
  96. 96.
    Venturelli E, Villa C, Fenoglio C, Clerici F, Marcone A, Benussi L et al (2011) BAG1 is a protective factor for sporadic frontotemporal lobar degeneration but not for Alzheimer’s disease. J Alzheimers Dis 23:701–707PubMedGoogle Scholar
  97. 97.
    Venturelli E, Villa C, Fenoglio C, Clerici F, Marcone A, Benussi L et al (2010) Is KIF24 a genetic risk factor for frontotemporal lobar degeneration? Neurosci Lett 482:240–244CrossRefPubMedGoogle Scholar
  98. 98.
    Villa C, Venturelli E, Fenoglio C, Clerici F, Marcone A, Benussi L et al (2009) DCUN1D1 is a risk factor for frontotemporal lobar degeneration. Eur J Neurol 16:870–873CrossRefPubMedGoogle Scholar
  99. 99.
    Stefani F, Zhang L, Taylor S, Donovan J, Rollinson S, Doyotte A et al (2011) UBAP1 is a component of an endosome-specific ESCRT-I complex that is essential for MVB sorting. Curr Biol 21(14):1245–1250CrossRefPubMedGoogle Scholar
  100. 100.
    Van Deerlin VM, Sleiman PM, Martinez-Lage M, Chen-Plotkin A, Wang LS, Graff-Radford NR et al (2010) Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet 42:234–239CrossRefPubMedGoogle Scholar
  101. 101.
    van der Zee J, Van Langenhove T, Kleinberger G, Sleegers K, Engelborghs S, Vandenberghe R et al (2011) TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort. Brain 134:808–815CrossRefPubMedGoogle Scholar
  102. 102.
    Carrasquillo MM, Nicholson AM, Finch N, Gibbs JR, Baker M, Rutherford NJ et al (2010) Genome-wide screen identifies rs646776 near sortilin as a regulator of progranulin levels in human plasma. Am J Hum Genet 87:890–897CrossRefPubMedGoogle Scholar
  103. 103.
    Riedijk SR, Niermeijer MFN, Dooijes D, Tibben A (2009) A decade of genetic counseling in frontotemporal dementia affected families: few counselling requests and much familial opposition to testing. J Genet Counsel 18:350–356CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Chiara Cerami
    • 1
  • Elio Scarpini
    • 2
  • Stefano F. Cappa
    • 1
  • Daniela Galimberti
    • 2
  1. 1.Neurorehabilitation Unit, Department of Clinical Neurosciences, San Raffaele Scientific InstituteVita Salute UniversityMilanItaly
  2. 2.Department of Neurological Sciences, Dino Ferrari CenterUniversity of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore PoliclinicoMilanItaly

Personalised recommendations